|  Quantum Spacetime – Proposals | 
Based on Math / Geometry
  > s.a. critical phenomena; differential geometry;
  lattice field theory; spacetime structure [generalizations].
  * Abstract homotopy theory:
    View points as relational, maps between spaces (Grothendieck and topology of any category).
  @ From null surfaces: Frittelli et al CQG(97)gq/96.
  @ By extension to higher dimensions:
    Snyder PR(47),
    PR(47) [5D de Sitter];
    Honeycutt IJTP(91).
  @ d-space: Gruszczak et al JMP(88),
    FP(89);
    Multarzyński & Heller FP(90);
    Kull & Treumann IJTP(95).
  @ Topology:
    Kaplunovski & Weinstein PRD(85) [dynamical topology and dimension];
    Zapatrin IJTP(93),
    gq/95-conf [finite];
    Madore & Saeger CQG(98)
      [undefined at lP];
    Crane MPLA(05) [relational topology];
    Spaans IJMPD(13) [quantum foam of mini-black-holes and prime 3-manifolds].
  @ Topos theory:
    Guts & Grinkevich gq/96;
    Raptis IJTP(07)gq/05;
    Crane a0706.
  @ More proposals: Aref'eva & Frampton MPLA(91) [p-adic spacetime];
    Álvarez et al PRD(92) [quantum metric space];
    Pirogov PAN(03)hp/01  [symplectic];
    Stuckey gq/01 [Borel set];
    Porter gq/02 ['fractafolds'];
    Efremov & Mitskievich gq/03,
    gq/03
      [discrete T0 spaces];
    Crane a0804-GRF [loop space; non-distributive lattice];
    Dahm PAN(12)-a1102-conf [from groups/Lie algebras].
  > Related topics: see connections;
    fractals in physics [including multifractal spacetime]; monopoles
    and solitons [fuzzy]; Non-Associative Geometry;
    non-commutative geometry; world function.
Based on Algebra / Logic
  @ Algebraic:
    Bohm et al pr(81)qp/06;
    Bannier IJTP(94);
    Yurtsever CQG(94)gq/93;
    Parfionov & Zapatrin IJTP(95)gq;
    Zapatrin gq/95-conf;
    Raptis & Zapatrin IJTP(00) [and continuum correspondence];
    Jaramillo & Aldaya JPA(99);
    Freidel et al a1606
      [Heisenberg algebra polarization and modular spaces].
  @ Categorical:  Isham FP(05);
    Crane a0810,
    IJMPA(09).
  @ Other logic, abstract: Wheeler in(80),
    in(83);
    Finkelstein in(68),
    IJTP(87);
    Moore IJTP(00) [order].
  @ Self-organising information:
    Cahill & Klinger PLA(96)gq,
    PiP(05)gq/97,
    GRG(00)gq/98;
    Cahill et al ThPh(00)gq.
Based on Quantum Theory / Other Physics > s.a. branes;
  emergence [including entanglement]; holographic field
  theory; non-commutative geometry; strings.
  @ Spatial manifold from quantum theory:
    Balachandran qp/97;
    Kempf RPMP(99)ht/98;
    Kryukov FP(04);
    Chew et al a1603 [quantum space];
    Freidel et al PRD(16)-a1609
      [Euclidean quantum space as a choice of polarization for the Heisenberg algebra of quantum theory].
  @ Branching spacetime: Belnap Syn(02)ps/03;
    Kowalski & Placek IJTP(00) [GHZ/Bell theorems];
    Weiner & Belnap Syn(06);
    Wroński & Placek SHPMP(09)-a0706 [Minkowskian].
  @ String theory: Hata et al PLB(86);
    Amati et al PLB(89);
    Ellis et al PLB(92);
    Bergman ht/96,
    ht/96  [string-bits];
    Witten PT(96)apr;
    Ansoldi et al CSF(99)ht/98,
    CQG(99)ht/98;
    Li & Yoneya CSF(99)ht/98;
    Polchinski IJMPA(99)ht/98;
    Smolin NPPS(00)ht/98 [and spin networks];
    Horowitz NJP(05)-gq/04;
    Fontanini et al PLB(06) [0-point length];
    Schimmrigk CMP(11)-a0812 [string-theoretic modular motives];
    West JHEP(14)-a1403 [and gauge transformations].
  @ Condensed-matter ideas: Lobo et al PRD(15)-a1412 [microscopic defects and effective metric-affine geometry];
    Tenev & Horstemeyer a1603 [mechanics of the cosmic fabric];
    > s.a. defects; emergent gravity.
  @ More proposals: Marlow IJTP(82),
    IJTP(84),
    IJTP(86),
    IJTP(88);
    Müller-Hoissen AIHP(84) [from gauge theory];
    Marlow IJTP(95),
    IJTP(96);
    Lyre qp/97/IJTP [ur-spins-tetrads-spacetime vectors];
    Ambjørn et al NPB(98) [c = −2];
    Anandan IJTP(02)qp/00-conf [relations between states];
    Yaremchuk qp/01,
    qp/01
      [ℵ0 < card < ℵ1];
    Khrennikov qp/03-conf,
    qp/03 [prespace];
    Brody & Hughston PRS(05)gq/04 [higher-dimensional quantum spacetime];
    Raussendorf et al a1108 [measurement-based quantum computation];
    Dvali & Gómez JCAP(14) [spacetime as composite of soft gravitons];
    Steinacker a1911 [higher-spin theory];
    > s.a. higgs mechanism [gravitational].
Other Proposals
  > s.a. Accelerated Fields; manifolds;
  quantum field theory [generalizations]; spacetime foam.
  @ General references: Cole IJTP(68),
    IJTP(69),
    IJTP(69) [causality without a metric];
    Barut in(82);
    Banai IJTP(84);
    Prugovečki 84;
    Terazawa in(84);
    Ali RNC(85);
    Liebscher in(85);
    Whipple NCA(86);
    Szabó JMP(86),
    IJTP(87);
    Chew & Stapp FP(88);
    Görnitz IJTP(88),
    IJTP(88);
    Majid CQG(88) [Hopf algebra];
    Görnitz & Ruhnau IJTP(89);
    Szabó IJTP(89);
    Stapp FP(88);
    Hemion IJTP(89);
    Lev JMP(89);
    Prugovečki FPL(90);
    Namsrai IJTP(91);
    Amati in(92);
    Chapline MPLA(92),
    ht/98 [coherent graviton state],
    MPLA(99) [anyonic superconductivity];
    Lev JMP(93);
    Wetterich NPB(93) [from general statistics];
    Gibbs ht/95 [event-symmetric physics];
    Leifer qp/96 [superrelativity, non-locality];
    Mäkelä gq/07,
    a0805,
    a0805 [graph with black holes at vertices].
  @ Károlyházy proposal: Károlyházy et al in(82);
    Diósi & Lukács NCB(93)gq, PLA(93) [excluded by phenomenology];
    Ma PLA(98),
    comment Diósi PLA(99);
    Frenkel FP(02)qp/00;
    > s.a. cosmological acceleration; quantum-gravity phenomenology.
  @ Other: Stainsby & Cahill PLA(90) [Euclidean spacetime inside hadrons];
    Stavraki TMP(90) [discrete operator fields];
    Rylov JMP(91) [generalized Lorentz manifold];
    Antonuccio gq/93 [quasi-number algebra];
    McCall 94;
    Prugovečki FP(94) ["quantum frames"];
    Finkelstein et al CQG(97)qp/96;
    Stuckey gq/02/JPA;
    Hohmann et al a0809
      [quantum manifold locally isomorphic to Schwartz space];
    de la Torre a1705 [spacetime fabric model].
  @ Doubtful, bogus:
    Krasnoholovets IndJTP(00)qp/01,
    S&S(00)qp/01,
    IJCAS(02)qp/01,
    ht/02/FizB ["inertons"];
    Bogdanoff & Bogdanoff AP(02) [KMS condition].
  > Related topics: see discrete geometries
    [time]; discrete spacetime models; geometrodynamics
    [including generalized space of spaces]; information and spacetime / gravity;
    networks; regge calculus; topological
    field theories; twistors; wormholes.
Even More Speculative > see physics [higgledy-piggledy etc].
"Everybody thinks spacetime should be an output rather than an input of a final theory" – Nathan Seiberg, NYT 26.06.2001.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 16 jul 2020