|  Quantum Mechanics in General Backgrounds | 
Curved Spaces / Spacetimes > s.a. path-integral approach;
    quantum states [space of states]; quantum systems [on group manifolds].
  * Remark: In curved spacetime
    there is no momentum representation because in that case the conjugate variables
    would not commute and could not be represented by derivative operators.
  @ Curved configuration space:
    Argyres et al JPA(89) [2D, negative curvature];
    Foerster et al PLA(94) [as constrained system];
    Tagirov IJTP(03)gq/02;
    Milatovic JGP(06) [separation properties];
    Moschella & Schaeffer CQG(07)-a0709 [constant negative curvature];
    Morchio & Strocchi LMP(07);
    Olpak MS-a1010;
    Cariñena et al JMP(11)-a1201 [on spherical and hyperbolic spaces];
    Bracken Chaos(14)-a1406,
    JMP(14)-a1407 [on a manifold of constant curvature, using Noether symmetries];
    Nakamura a1412 [operatorial quantization formalism].
  @ In curved spacetime: Audretsch & de Sabbata ed-90;
    Yamada & Takagi PTP(91),
    PTP(91);
    Molzahn et al AP(92);
    Tagirov TMP(96) [spinning non-relativistic particle],
    G&C(99)gq/98  [canonical];
    Moreira PRA(98)ht/97,
    PRA(98)ht/97 [conical singularity];
    Kerner JMP(99) [non-associative structure];
    Vitolo LMP(00) [fiber bundle formalism];
    Kleinert qp/00;
    Alsing et al GRG(01) [spin-0, 1/2, 1, WKB];
    Yurtsever & Hockney CQG(05)gq/04 [beyond Cauchy horizons];
    Francis gq/06
      [connection between Hilbert spaces at different points];
    Grain & Barrau PRD(07)-a0705 [semiclassical propagator];
    Bakke et al JPA(08)
      [EPR correlations, cosmic-string background];
    Perche & Neuser a2012;
    > s.a. decoherence; pilot-wave theory.
  @ In Schwarzschild spacetime: 
    Donoghue & Holstein AJP(86)sep;
    Kohli a1110;
    Exirifard & Karimi a2105
      [from field theory in curved spacetime, and effects].
  @ Other isolated objects:
    de Siqueira et al ht/97 [black hole];
    Gossel et al GRG(11)-a1006 [static gravitational field, scalar-particle energy levels].
  @ Cosmological spacetimes: 
    Tagirov gq/00 [FLRW spacetime];
    Lev a0807
      [two free particles in de Sitter space, and gravity];
    Ghosh & Mignemi IJTP(11)-a0911 [in de Sitter space, extended uncertainty principle].
  @ Other models and related topics: Mondragon et al PRD(07)-a0705
      [discrete, periodic time and space model for general relativistic quantum mechanics];
    Ord AP(09)
      [in 2D spacetime, and meaning of the wave function];
    Kowalski & Rembieliński AP(13) [on a cone];
    > s.a. generalized quantum mechanics.
  @  Schrödinger-Newton equation: Helou et al PRD(17)-a1612 [many-body, optomechanics experiment];
    Großardt JPCS(17)-a1702 [tests];
    > s.a. quantum gravity [alternatives].
  > Related topics:
    see causality violations; newton-cartan theory;
    theta sectors; modified uncertainty relations;
    rindler space [hydrogen atom].
Quantum Mechanics and Gravity / Covariance
  > s.a. reference frames [accelerated observers].
  @ With gravity term:
    Marciak-Kozlowska & Kozlowski qp/04,
    qp/04 [and pilot waves];
    Adler JPA(07)qp/06;
    > s.a. wave-function collapse.
  @ And general relativity, covariance:
    Mashhoon FP(86);
    Ho ht/95;
    Anandan MPLA(02)qp [(non-)locality];
    Wawrzycki mp/03-conf;
    Minic & Tze PRD(03)ht,
    PLB(04)ht/03;
    Poulin IJTP(06)qp/05 [relational];
    Olson & Dowling qp/07 [information and measurement];
    Khrennikov FP(17)-a1704 [present situation].
  @ Background-independent theory: Aalok IJTP(07)qp,
    a0805,
    IJTP(09);
    Rovelli a1108 [Hamilton function, classical limit].
  @ Related topics: Oeckl ATMP(08)ht/05 [general-boundary formulation];
    Schwartz a2009-PhD [in post-Newtonian gravitational fields].
Quantum Gravity and Generalized Backgrounds
  > s.a. non-commutative physics; quantum spacetime.
  * On a lattice: We want to calculate
    \(G_{\rm E}^{~}(x_2^{~},t; x_1^{~}, 0) = \int_0^t{\cal D}x(t) \exp[-S_{\rm E}^{~}/\hbar]\),
    and we substitute in the action dx/dt by \([x(t_i) - x(t_{i-1})]
    /\delta t\); One then uses the Monte Carlo method to integrate over random paths.
  @ And quantum gravity:
    Bertolami PLA(91) [corrections];
    Antonsen PRD(97) [Wigner functions];
    Hartle IJMPA(01) [without background causal structure];
    Isham qp/02;
    Balasubramanian et al gq/02-proc [and holography];
    Baez qp/04 [category language];
    Hartle in(07)gq/06 [generalized quantum mechanics];
    Kauffman & Lomonaco a1105 [quantizing algebraic, combinatorial and topological structures],
    Lomonaco & Kauffman SPIE(11)-a1105 [quantizing knots, graphs, groups, categories, ...].
  @ Discrete time: Bender et al PRD(05),
    PRD(86),
    PRD(87);
    Khorrami AP(95),
    AP(96);
    Date CQG(03)gq/02.
  @ Discrete spacetime:
    Gudder FP(88);
    Lorente in(97)qp/04;
    Piazza AIP(06)ht/05 [localized subsystems in Hilbert space];
    Koehler qp/06;
    Odake & Sasaki PTP(10)-a0902 [correspondence with regular Schrödinger equation, Crum's theorem];
    Bhatia & Swami IJTP(11)-a1011 [on a lattice];
    > s.a. quantum mechanics in phase space.
  @ Quantum mechanics in non-commutative spacetime:
    Adler NPB(94)ht/93,
    & Wu PRD(94),
    et al JMP(94) [generalized quantum dynamics];
    Balachandran et al JHEP(04)ht [Moyal plane],
    JHEP(04)ht [cylinder];
    Vaquera-Araujo & Lucio mp/05 [plane];
    Calmet & Selvaggi PRD(06)ht;
    Kopf & Paschke JMP(07) [non-commutative configuration spaces];
    Wachter qp/07,
    qp/07,
    qp/07;
    Noui PRD(08)-a0807.
  @ Other backgrounds: Hübschmann et al CMP(09) [on a stratified space];
    Vourdas JMP(11) [on \(\mathbb Q/\mathbb Z\)];
    Calcagni et al JMP(12)-a1207 [fractional spacetime].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 31 may 2021