|  Formulations of Maxwell's Theory | 
In General
  > s.a. electromagnetism; modified theories of electromagnetism.
  * Feynman's approach:
    Derive Maxwell's theory from quantum mechanics.
  * Lanczos' approach: A biquaternionic
    field theory in which point singularities are interpreted as electrons.
  @ Need for potentials: Aharonov et al PRA(16)-a1502
      [local interactions of gauge-dependent potentials, vs non-local interactions of gauge-invariant quantities];
    > s.a. aharonov-bohm effect.
  @ Gauge-invariant: Kijowski & Rudolph LMP(93) [spinor electrodynamics];
    Przeszowski JPA(05)ht [light-front variables];
    Mansfield JHEP(12)-a1108 [electric flux lines].
  @ Wheeler-Feynman direct interaction:
    Wheeler & Feynman RMP(45),
    RMP(49);
    De Luca JMP(09) [variational principle];
    Bauer et al JSP(14)-a1306;
    > s.a. causality.
  @ Feynman's approach: Dyson AJP(90)mar
    and comments;
    Lee PLA(90),
    comment Farquhar PLA(90);
    Tanimura AP(92);
    Kauffman & Noyes PRS(96);
    Montesinos & Pérez-Lorenzana IJTP(99)qp/98;
    Paschke mp/03 [on curved spaces];
    Cariñena & Figueroa JPA(06)ht,
    Kauffman IJTP(06) [and non-commutativity];
    Narayana Swami IJTP(09) [and quantum gravity];
    De Luca et al EJP(19)-a1902 [Feynman's other approach],
    a2001 [and other treatments].
  @ Lanczos approach: Lanczos (19)phy/04,
    ZfP(29)phy/05,
    PZ(30)phy/05;
    Gsponer & Hurni in(98)mp/04,
    FP(05)mp/04;
    > s.a. electromagnetism in curved spacetime [Lanczos-Newman electrodynamics].
  @ In accelerated frames: Muench et al PLA(00)gq,
    Mashhoon AdP(03)ht,
    PRA(04),
    PLA(07)ht [non-local];
    Hauck & Mashhoon AdP(03)gq [waves in rotating frame];
    Mashhoon PRA(05)ht [rotating, non-local];
    Maluf & Faria a1110-ch;
    > s.a. Reference Frames.
  @ Geometric formulations, and topology: Tonti in(95);
    Olkhov ht/02,
    ht/02-proc;
    Popławski a0802,
    MPLA(09) [unified with gravity];
    Boozer PLA(10) [2D, role of topology];
    Myrvold BJPS(11)
      [holonomy interpretation, implications and non-separability];
    Kulyabov et al a1403 [material media and effective spacetime geometry];
    Mannheim a1407 [and PT symmetry and conformal symmetry];
    Kim & Kim CQG(17)-a1507 [5D Kaluza-Klein theory];
    Kulyabov et al a2002 [Finsler approach];
    > s.a. particles [models]; teleparallelism.
  @ Emergent:
    Wang PRD(10) [entropic origin];
    Barceló et al NJP(14)-a1407;
    > s.a. emergent gravity.
Pre-Metric Formulation > s.a. lines [electromagnetism and line geometry].
  * History: The precursor was
    Einstein's proof in 1916 that electromagnetism can be put in generally covariant
    form, compatible with general relativity (only the constitutive tensor density
    depends on the metric); Developed with contributions by Weyl (1918), Murnaghan (1921),
    Kottler (1922), Cartan (1923), van Dantzig, Schouten & Dorgelo, Toupin &
    Truesdell, and Post; More recently, motivated by the 1962 suggestion by A Peres that
    electromagnetism is fundamental and gab
    a subsidiary field.
  @ General references: Kaiser JPA(04)mp [pa conservation];
    Hehl & Obukhov PLA(04)phy,
    FP(05)phy/04;
    Lämmerzahl & Hehl PRD(04)gq;
    Delphenich gq/04 [and complex geometry],
    AdP(05),
    gq/05-conf [symmetries],
    gq/05-conf [and spinors];
    Hehl AdP(08)-a0807;
    Bogolubov & Prykarpatsky a1204-in;
    Itin AP(12)-a1403 [jump conditions on an arbitrarily moving surface between two media];
    Delphenich proc(15)-a1512 [as an approach to unification];
    Pfeifer & Siemssen PRD(16)-a1602 [propagators, quantization];
    Fewster et al PRD(18)-a1709 [Quantum Energy Inequalities].
  @ History: Hehl & Obukhov GRG(05) [dimensions, units];
    Hehl et al IJMPD(16)-a1607-conf [Kottler's program, and gravity];
    Ni et al IJMPD(16)-a1611.
  @ Phenomenology: Itin PRD(05)ht [vacuum no-birefringence conditions],
    JPA(07),
    JPA(09)-a0903 [light propagation].
  @ And spacetime metric:
    Gross & Rubilar PLA(01);
    Rubilar AdP(02)-a0706 [emergence of the light cone];
    Itin & Hehl AP(04)gq [signature].
  @ Variants: Donev & Tashkova JGSP-a1603
    [non-linear extended electrodynamics].
Other Approaches
  > s.a. duality; parametrized formulation;
  Riemann-Silberstein Vector; self-dual fields.
  @ Spacetime 2-forms: Gogberashvili JPA(06)ht/05,
    De Nicola & Tulczyjew IJGMP(09)-a0704 [variational, in terms of de Rham even and odd forms];
    Itin & Friedman AdP(08)-a0808 [different possible 3+1 forms];
    da Rocha & Rodrigues AdP(10)-a0811,
    comment Itin et al AdP(10)-a0911 [pair and impair, even and odd forms];
    Grigorescu a0912.
  @ Other manifestly covariant: Hillion NCB(99);
    Marmo & Tulczyjew RPMP(06)-a0708 [and introduction of particles];
    Charap 11.
  @ Quaternionic:
    Kravchenko in(03)mp/02;
    Jack mp/03.
  @ Octonionic: Tolan et al NCB(06);
    Mironov & Mironov JMP(09);
    Nurowski a0906 [in terms of split octonions];
    Chanyal et al IJTP(10)-a0910;
    Pushpa & Barata IJGMP-a1310 [fully symmetric Maxwell equations].
  @ Lorenz's theory: Wong a1012;
      Kragh a1803 [1867 paper and annotations];
      > s.a. history of physics.
  @ Other formulations:
    Harmuth et al 01 [magnetic dipole currents??];
    Coll AFLB(04)gq/03;
    Bzdak & Hadasz PLB(04) [and sqrt of Dirac];
    Gottlieb mp/04;
    Holland PRS(05)qp/04 [Eulerian hydrodynamic model];
    Rahman AIP(06)phy/04 [in terms of two 2-component relativistic fluids];
    De Montigny & Rousseaux EJP(06)phy/05 [non-relativistic limits];
    Pierseaux & Rousseaux phy/06;
    Re Fiorentin NCB(08)-a0905;
    Zalesny IJTP(09)
      [in Dirac-equation form, and moving dielectrics];
    Kisel et al RicMat(11)-a0906-in [matrix formalism];
    Bogolubov et al TMP(09) [and vacuum structure];
    Gill & Zachary FP(11)-a1009;
    Heras EJP(10)
      [without assuming the c equivalence principle];
    Yerchuck et al a1101  [complex-field formulation];
    Aste JGSP(12)-a1211 [mass term and relativistic invariance];
    Escalante & Tzompantzi IJPAM(12)-a1301 [alternative action, Hamiltonian analysis];
    Nasmith a1306
      [for an observer travelling at constant velocity through an isotropic medium];
    Rajagopal & Ghose a1409 [Koopman-von Neumann formalism];
    > s.a. Clebsch Potential.
Semiclassical, with Quantum Fields
  > s.a. aharonov-bohm effect; charge [quantization];
  quantum dirac fields; spacetime foam.
  @ And spinors: Laporte & Uhlenbeck PR(31);
    Kijowski & Rudolph LMP(93);
  Olkhov qp/01-conf.
  @ Semiclassical particle in classical field:
    Bordovitsyn & Myagkii PRE(01)mp [electron in B field].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 14 feb 2020