|  Chaos in Bianchi Models | 
Vacuum Bianchi IX > s.a. chaos in gravitation;
  minisuperspace quantum cosmology [quantum chaos].
  * Qualitatively: From the
    relation between the discrete approximation and the continuum dynamics,
    the behavior is like a "punctuated integrability", with chaos
    produced in short kicks at the bounces between Kasner epochs.
  * Quantitatively: Lyapunov
    exponents are problematic, because of the time-reparametrization problem (also,
    numerical studies led to different conclusions, due in part to errors in the
    simulations), so try different approach; Fractal methods concluded that the
    system is chaotic; The Gauss map has Kolmogorov entropy h
    = π2/(6 ln2 2).
  @ Overview: Hobill, Burd, ... in Hobill et al ed-94;
    Kamenshchik PU(10)-a1006.
  @ Discrete dynamics vs continuum time:
    Rugh & Jones PLA(90) [not chaotic];
    Berger CQG(90),
    GRG(91) [ADM, chaotic],
    in(94);
    Creighton & Hobill in(94);
    Imponente & Montani PhyA(04)gq,
    gq/04-MGX.
  @ Discrete dynamics, chaotic: 
    Barrow PRL(81),
    PRP(82);
    Chernoff & Barrow PRL(83);
    Barrow in(85);
    Khalatnikov et al JSP(85);
    Mayer PLA(87) [relaxation time];
    Berger PRD(93).
  @ Numerical, positive Lyapunov exponents:
    Zardecki PRL(83) [BKL, Hamiltonian constraint violated];
    Ferraz et al PLA(91);
    Ferraz & Francisco PRD(92) [different def of time].
  @ Numerical, zero Lyapunov exponents:
    Francisco & Matsas GRG(88);
    Burd et al GRG(90).
  @ Analytical, zero Lyapunov exponents:
    Hobill et al CQG(91).
  @ Problem with the Lyapunov exponents:
    Burd et al CQG(91),
    in(91) [local Lyapunov exponents];
    Pullin in(91).
  @ Geometrical methods:
    Di Bari & Cipriani in(00)gq/98 [Finsler geometry];
    Imponente & Montani IJMPD(03)gq/01;
    Montani & Benini PRD(04)gq;
    Benini & Montani IJMPA(08)-proc.
  @ Analogies: Pavlov gq/95 [generalized Toda];
    Graham gq/94,
    Imponente & Montani PRD(01)ap [as billiard].
  @ As geodesic flow:
    Szydłowski & Łapeta PLA(90);
    Uggla et al PRD(90);
    Szydłowski & Biesiada PRD(91);
    Szydłowski & Szczesny PRD(94).
  @ Painlevé, non-integrability:
    Contopoulos et al JPA(93),
    JPA(94),
    JPA(95);
    Cotsakis & Leach JPA(94);
    Latifi et al PLA(94)gq;
    Christiansen et al JPA(95);
    Scheen & Demaret CQG(96).
  @ Fractal basins of attraction: Cornish & Levin PRL(97)gq/96,
    PRD(97)gq/96,
    gq/97-MG8;
    Motter & Letelier PLA(01)gq/00.
  @ Related topics: Demaret & De Rop PLB(93) [fractal power spectrum];
    Cushman & Śniatycki RPMP(95) [local integrability];
    Imponente & Montani NPPS(02)gq/01,
    IJMPD(03)gq/04 [and quantum gravity];
    Andrianopoulos & Leach JPA(08);
    Battisti & Montani PLB(09)-a0808 [and generalized uncertainty principle].
 Bianchi IX with Matter and in Other Theories
  > s.a. bianchi IX models.
  @ With matter: Bruni & Sopuerta CQG(03)gq
      [fluid, role of Hab];
    Fay & Lehner GRG(05) [massive scalar].
  @ With matter and cosmological constant: de Oliveira et al PRD(97)gq,
    gq/97-MG8,
    PRD(02)gq,
    Soares & Stuchi PRD(05);
    Corrêa et al PRD(10)-a1005  [homoclinic].
  @ In Brans-Dicke theory: Carretero-González et al PLA(94);
    Scheen & Demaret CQG(96).
  @ In higher dimensions:
    Barrow & Stein-Schabes PRD(85);
    Demaret et al PLB(86),
    PLB(88);
    Helmi & Vucetich PLA(95) [Kaluza-Klein];
    Halpern GRG(03)gq/02 [5D, no chaos].
  @ Other theories: Spindel & Zinque IJMPD(93) [higher-derivative];
    Erickson et al PRD(04)ht/03 [stringy, w > 1];
    Di Menza & Lehner GRG(04) [scalar-tensor, suppression of chaos];
    Kim & Kawai PRD(13)-a1301 [Gauss-Bonnet gravity];
    Moriconi et al a1411
      [R + qR 2, chaos removal].
Other Bianchi Models > s.a. bianchi
  models; born-infeld theory [I, Einstein-Yang-Mills].
  @ General references:
    Jantzen PRD(86) [Einstein-Maxwell-scalar];
    de Buyl et al CQG(03) [Einstein billiards];
    Jin & Maeda PRD(05)gq/04 [with Yang-Mills field];
    Larena & Perez CQG(07)-a0706 [integrability in scalar-tensor gravity, based on Kovalewski exponents].
  @ V: in Rebouças et al GRG(98)gq.
  @ VI: Berger CQG(96)gq/95 [magnetic VI0];
    LeBlanc et al CQG(95) [magnetic VI0].
  @ VIII: Halpern GRG(87);
    Graham gq/94 [including quantum];
    Barrow & Gaspar CQG(01) [far future];
    Maciejewski et al JMP(01) [non-integrability];
    Gaspar GRG(04)gq.
  @ Higher-dimensional homogeneous cosmologies: Benini et al gq/07-MGXI [and vector fields].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 4 nov 2014