|  Gravitational Wave Interferometers | 
In General, Ground-Based > s.a. detection of gravitational
  waves [including status, other types of detectors, conceptual issues, detection news].
  * Theory: For the
    separation between two free particles, δL / L
    = \(1\over2\)hTTij
    ni n j
    + O(h2).
  * 2012: With Advanced LIGO and Virgo
    coming online, routine gravitational-wave detections are expected after 2015.
  * 2015: Advanced LIGO is in its
    commissioning stage, preparing for scientific runs, soon to be followed by Advanced
    Virgo; Detections by 2018?
  * 2016-02: Detection of signal from
    binary-black-hole coalescence announced!
  * 2018-10: The US is planning the
    Cosmic Explorer, an L-shaped interferometer on the Earth's surface with 40-km arms
    (> see website).
  * Polarization: 2016, Its detection will
    require at least three detectors (and a good signal); In practice, we may have to wait
    for Advanced Virgo.
  @ Intros, reviews: Giazotto PRP(89);
    Finn gq/96 [LIGO as a community];
    Barish gq/99-in;
    Sintes in(99)gq/00;
    Hough & Rowan LRR(00),
    update Pitkin et al LRR(11)-a1102;
    Robertson CQG(00);
    Freise & Strain LRR(10)-a0909;
    Bizouard & Papa CRP(13)-a1304;
    news at(13)may [status and plans];
    Adhikari RMP(14)-a1305;
    Saulson 17;
    Feder PT(18)oct [status and plans];
    Dooley et al a2103-in [and history].
  @ Background: Allen & Brustein PRD(97)gq/96;
    Maggiore PRP(00)ap/99;
    Babusci & Giovannini CQG(00)ap/99,
    gq/99 [VIRGO].
  @ Networks: Frasca & Papa IJMPD(95);
    Bose et al Pra(99)gq;
    Wen & Chen PRD(10) [angular resolution];
    Schutz CQG(11) [effectiveness].
  @ Detector-related topics: Sun et al PRL(96) [Sagnac interferometer];
    Saulson AJP(97)jun [operation];
    Cohadon et al PRL(99)
    + pn(99)sep [mirror cooling];
    Vinet LRR(09) [optical modes and thermal issues];
    Cornish PRD(09)-a0910,
    Melissinos & Das AJP(10)nov-a1002 [response];
    Ben-Aryeh a1010 [using squeezed states and balanced homodyne detection];
    Khalili PRD(11)-a1102 [Mach-Zehnder topologies for future detectors];
    Graham et al PRL(13)-a1206 [based on optical atomic clocks and atom interferometry];
    Hammond et al JMO(14)-a1402 [advanced technologies];
    Tinto & Dhurandhar LRR(14) [time-delay interferometry];
    Pang & Chen PRD(18)-a1808 [quantum interactions with gravitational waves];
    Błaut CQG(19)-a1901 [gauge-independent treatment of response];
    Pang & Chen PRD(19)-a1903 [measurement, radiation and decoherence];
    Schubert et al a1909 [atom interferometer, between 0.3 and 5 Hz];
    Jaén & Talavera a1912 [novel approach].
  @ Other related topics: Buonanno & Chen CQG(01)gq/00 [and standard quantum limit];
    Faraoni GRG(07)gq [correcting a misconception];
    Corda IJMPD(07)gq [importance of magnetic component of waves];
    Finn PRD(09)-a0810 [detailed derivation of response];
    Fairhurst CQG(11)-a1010,
    Klimenko et al PRD(11)-a1101 [source localization];
    Hild CQG(12)-a1111-proc [beyond the second generation];
    Danilishin & Khalili LRR(12)-a1203 [and quantum measurement theory];
    Martynov et al PRA(17)-a1702 [quantum correlation measurements];
    Hagihara et al PRD(18)-a1807
      [polarization, with Advanced LIGO, Advanced Virgo and KAGRA];
    > s.a. physics teaching [undergraduate labs].
LIGO (Laser Interferometer Gravitational-Wave Antenna)
  > s.a. detection of gravitational waves [news].
  * Idea: A pair of 4-km
    interferometers (Hanford, WA, and Livingston, LA, 10 light-ms apart),
    by a Caltech, MIT, ..., collaboration.
  * Status: 1998, Under
    construction; 1999, 40-m prototype operational at Caltech, h
    ~ 10−19; 2000, Engineering runs;
    2002, First data taking run; 2004, Three data runs completed, h
    ~ 10−22 Hz−1/2
    at 100–300 Hz; 2006, Science runs S1–S4 completed, S5 in progress
    (2006–2007) with detector at design sensitivity for f > 150 Hz;
    2012, Upgrade to Advanced LIGO and engineering runs, with 2nd-generation science
    runs expected for 2015; 2014, New interferometer installed in Livingston.
  * Frequency range: f
    ~ 10−104 Hz, limited below by seismic
    noise, above by laser shot noise.
  * Detection rate: Sensitive to
    1 MSun binary coalescence at a few
    Mpc, with expected rate ~ 1/13 yr.
  * Advanced LIGO: Should be able
    to detect inspirals out to 200 Mpc, 1–100/yr; Operation may start in 2007;
    2011, Operation may start in 2015; It did, and the Collaboration reported GW150914
    in 2016; 2019-04, LIGO and Virgo back on with squeezed light.
  * Advanced LIGO Plus: 2019, Expected
    to start operating in 2024, will use squeezed light to improve sensitivity [@ news
    sn(19)feb].
  @ General references:
    Finn gq/96-in [research community];
    Barish & Weiss PT(99)oct [preview];
    González gq/03-proc [status];
    Abbott et al RPP(09)-a0711;
    Smith et LSC CQG(09)-a0902 [enhanced and advanced];
    Waldman et LSC a1103-proc [advanced];
    LSC CQG(15)-a1411,
    Staley et al CQG(14) [advanced];
    news ns(16)apr [plans];
    LSC & Virgo CQG(16)
    + CQG+ [detector characterization];
    news sn(19)apr,
    focus Phys(19)dec [squeezed light].
  @ Binary coalescence: LSC et Virgo PRD(10)-a1005;
    Abadie et al (LSC + Virgo) PRD(12),
    PRD(12);
    Aasi et al PRD(13)-a1209 [2009-2010 data];
    Singer a1501-PhD [search for binary neutron star mergers];
    Berry et al ApJ(15)-a1411 [ns-ns parameter estimation];
    Palmese & Conselice PRL(21) [ultradwarf galaxy merger?].
  @ Detections: LSC & Virgo, Abbott et al PRL(16)-a1602
    + Berti Phy(16)-a1602 [GW150914];
    LSC & Virgo PRD(16)-a1602
    and PRL(16)-a1602;
    Loeb ApJL(16)-a1602 [electromagnetic counterpart?];
    LSC & Virgo PRX(16)-a1606 [improved analysis];
    LSC & Virgo PRL(16)-a1606 [GW151226],
    PRX(16)-a1606 [full results];
    Abbott et al PRL(17)-a1706
    + news pw(17)jun [GW170104];
    news sn(17)sep [LIGO+Virgo triple detection];
    news sn(19)may [status];
    news sn(20)sep [intermediate-mass black hole].
  @ Bursts: Weinstein for LIGO CQG(04)gq/03;
    Abbott et LSC PRD(05)gq [GRB030329],
    PRD(05)gq;
    LIGO CQG(07)-a0704 [4th science run];
    Thorne et LSC a0706-proc;
    Abbott et LSC PRD(09)-a0904 [from cosmic (super)strings],
    PRD(09)-a0904 [high-frequency];
    LSC and Virgo a1908 [supernovae, search].
  @ Periodic sources: Abbott et LSC PRD(05)gq [neutron star + neutron star];
    Abbott et al PRD(06) [black hole + black hole];
    LSC PRD(07)gq/06 [data from S2 run];
    Abbott et LSC PRD(08)-a0704,
  PRD(08)-a0708,
    PRD(08)-a0712 [data from S3 and S4 runs];
    LSC PRD(09)-a0901 [data from S5 run].
  @ Stochastic background: Abbott et LSC PRD(04)gq/03;
    LSC ApJ(07)ap/06;
    Abbott et LIGO + Allegro PRD(07) [cross-correlation analysis];
    Fotopoulos et LSC JPCS(08)-a0801;
    Abadie et al PRD(12) [bounds at 600-1000 Hz].
  @ Related topics: González CQG(00)gq [thermal noise in suspension];
    Kocsis ApJ(13)-a1211 [SMBHs, prospects for LIGO-Virgo detections].
Other Detectors
  > s.a. space-based gravitational-wave interferometers.
  * VIRGO: Italian-French
    collaboration, 3-km arms, near Pisa, very similar to LIGO; 2004, Being commissioned;
    2006, Science run; 2011-2012, Advanced Virgo may start operating in 2015.
  * GEO600: British-German, near
    Hannover; 2004, Operating, more advanced techniques than LIGO I but shorter;
    2006, Beginning of continuous operation [@ news
    sr(06)jun];
    > s.a. website.
  * TAMA300: Japanese collaboration
    ("prototype for 3-km"), near Tokyo; 2004, Taking data since before LIGO.
  * AIGO: 2006, Proposed but not
    accepted, its future is not certain.
  *  Einstein Telescope (ET): 2010,
    A Europen proposal for a triangle configuration of underground tunnels, three interferometers
    with 10-km arms cooled to around 10 K, conceived in 2008; 2020, It is currently at an advanced stage of design.
  * KAGRA: 2019, An underground 
    interferometer cooled to 20 K with 3-km-long arms in Kamioka, Japan; 2020,
    Recently began operations.
    * LIGO-India: 2020, It is hoped that it will be operational after 2025.
  @ VIRGO:  Hellemans SA(03)aug;
    Spallicci et al CQG(05)gq/04 [advanced];
    Acernese et al CQG(05)gq/04,
    CQG(06) [status];
    Virgo CQG(08)-a0803 [search in connection with GRB 050915a];
    Sengupta JPCS(10)-a0911 [LIGO-VIRGO search for coalescing binaries];
    Accadia et al CQG(11) [status];
    LSC & Virgo a1203 [sensitivity achieved];
    Virgo Collaboration CQG(15)-a1408 [Advanced Virgo].
  @ GEO600: Schutz PTPS(99)gq-in;
    Balasubramanian et al CQG(05)gq;
    Hild CQG(06) [status];
    Lück et al JPCS(10)-a1004 [upgrade].
  @ TAMA300: Tagoshi et al PRD(01);
    Ando et al PRD(05)gq/04.
  @ Einstein Telescope: Bosi & Porter GRG(11)-a0910 [data analysis];
    Sathyaprakash et (multi) al a1108-proc,
    CQG(12)-a1206-proc [scientific potential and objectives];
    news livesci(18)apr;
    Maggiore et al JCAP(20)-a1912 [the science case];
    Amann et al a2003 [site selection criteria].
  @ KAGRA: 
    KAGRA Collaboration a1710-proc [status];
    Akutsu et al nAstr(19)-a1811,
    CQG(19)-a1901,
    news sn(19)jan [KAGRA];
    Michimura et al a1906-MG15,
    PRD(20)-a2006 [improvements];
    Akutsu et al a2005,
    PTEP-a2008,
    PTEP-a2009 [overview].
  @ Related topics: Sato et al PRD(04)gq [LISM, underground];
    Nishizawa et al PRD(08) [at 100 MHz];
    Yu & Tinto GRG(11)-a1003-proc [single-arm interferometers];
    Punturo & Somiya IJMPD(13)-MG13;
    Harms et al PRD(13)-a1308 [low-frequency terrestrial detectors];
    news ns(14)feb [India];
    Hu & Zhang a1707 [using weak measurements];
    Park et al a1906 [stellar interferometry];
    Sedda et al CQG(20)-a1908 [in the dHz range];
    Liu & Gong a2001 [3D proposal];
    Adya et al a2004 [Asian region, status];
    news Phys(20) [high-frequency tabletop detector];
    Hu & Zhang a2007 [broadband high-frequency interferometer];
    Ackley et al PASA(20)-a2006 [NEMO kHz-band detector];
    Saleem et al a2105 [LIGO-India].
Specific Sources and Data Analysis > s.a. gravitational-wave
  background [including primordial]; sources of gravitational waves.
  * Binary inspirals: Because of the
    very low signal-to-noise ratio, the main method used is matched filtering, the
    comparison of data with a large set of templates developed for different parameter
    sets; Since the physics of binaries is simple, there are only 8 parameters (2
    masses, 2 spin magnitudes, 2 spin directions), which can be reduced to 7 using
    overall mass scaling and 6 using statistical arguments on spins; Templates presumably
    need to be as accurate as O(v6);
    2010, Current ones obtained using PN techniques are good enough for (possible)
    detection, but not for parameter estimation; For better ones, have to speed up
    numerical simulations considerably; To detect the weaker waves, may have to extract
    signal from many months of data; > s.a. numerical
    simulations of black holes.
  * Other sources: Bursts,
    stochastic background, continuous sources (rotating stars, etc).
  @ General references:
    Finn FGCS-gq/99 [data archive];
    Królak gq/99;
    Sahay PhD(01)gq/02;
    Abbott et al (LIGO and Virgo) LRR(16) [observing transients].
  @ Techniques: Tagliaferri et al ap/99-proc [neural networks];
    Pradier et al IJMPD(00)gq-proc,
    PRD(01)gq/00 [filters, triggers];
    Black & Gutenkunst AJP(03)apr [intro];
    Hild et al CQG(10)-a0906 [proposal of xylophone configuration];
    Krastev a1908 [neural networks, binary neutron star mergers].
  @ Noise: Thorne & Winstein PRD(99)gq/98;
    Creighton PRD(99)gq;
    Allen et al gq/99;
    González SPIE(03)gq;
    Dolesi et al PRD(11);
    Thrane et al PRD(14) [correlated noise];
    Powell et al CQG(15)-a1505 [classifying noise transients];
    Danilishin a1903-LRR [quantum noise suppression];
    > s.a. metric fluctuations.
  @ Bursts: Searle et al CQG(09)-a0809 [unmodeled].
  @ Binaries:
    Ryan PRD(97) [massive body multipoles];
    Allen et al PRL(99) [bounds from 40-m prototype];
    Martel AIP(99)gq,
    & Poisson PRD(99)gq [eccentric];
    Dhurandhar & Vecchio PRD(01)gq/00;
    Abbott et al & Akutsu et al PRD(06)
      [neutron star + neutron star, LIGO+TAMA300];
    Mukhopadhyay et al PRD(06)gq,
    PRD(09) [coherent vs coincident strategies];
    Corvino et al a1203 [methods to estimate detection rates].
  @ Related topics: Jaranowski et al PRD(98)gq,
    & Królak PRD(00)gq/99 [spinning neutron stars];
    Anderson & Balasubramanian PRD(99)gq [unmodeled sources];
    Yunes & Pretorius PRD(09)-a0909 [theoretical bias and post-Einsteinian framework];
    Leaci JPCS(12)-a1201 [continuous wave signals].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 10 may 2021