Particle Statistics  

Identical Particles > s.a. correlations; Gibbs Paradox; Permutations [more general theories]; Quasiset Theory; representations in quantum theory.
* Idea: Several definitions of identical particles and indistinguishable particles are used, and in some cases the two terms are taken to be synonymous; Because of how these concepts are used in statistical mechanics, I will take identical particles to be ones that have the same intrinsic properties (mass, spin, and all charges if taken to be elementary, composition if taken to be composite), and indistinguishable particles those which in addition belong to a multi-particle system in which they can occupy the same 1-particle states.
@ Conceptual: Sudarshan AJP(75)jan; Dieks Syn(90); Pešić AS(02); Hilborn & Yuca BJPS(02) [philosophical]; Milotti a0705 [Fermi's views]; Monaldi SHPMP(09) [history]; French & Krause 10 [Identity in Physics]; Reyes-Lega JPA(11)-a1112 [geometry]; Caulton PhSc(13)-a1409, a1409 [and individuation]; Krause a1708 [and Newtonian space and time]; Dieks & Lubberdink a1902-in [distinguishable]; Acacio de Barros et al a1906 [new ontology]; Saunders SHPMP(20)-a2007 [and early quantum theory]; news SA(20)sep [applications]; Dieks a2102 [as one single quantum object]; Benavoli et al a2105 [and observables].
@ General references: Tikochinsky & Shalitin AJP(90)jan [(anti)symmetrization]; Pesic AJP(91)nov [and formulation of quantum mechanics]; Redhead & Teller BJPS(92); Leinaas & Myrheim IJMPA(93), Leinaas ht/96-ln [algebraic]; York AIP(00)qp; Philippe et al mp/02/JPA [survey]; French & Rickles qp/03-in; Goldstein et al JPA(05)qp/04 [all particles identical]; Niven PLA(05)cm/04 [MB, BE, and FD, combinatorial]; Omar CP(05)qp [rev]; Herbut qp/06; de la Torre & Mártin EJP(09) [and counting of states]; Lubberdink a0910; Reyes-Lega JPA(11) [geometry]; Neori & Goyal AIP(13)-a1211 [on the Symmetrization Postulate]; Goyal a1309 [informational approach, no generalized statistics]; Seglar & Pérez EJP(15)-a1411 [two kinds of solutions]; Wang et al PLB(20)-a1602 [and spacetime surgery]; Krause a1703 [and Newtonian spacetime]; Karczewski et al PRL(18)-a1706 [generalized probabilistic description]; van Enk a1810 [exchange symmetry vs actual exchange]; Karczewski et al PRA(19)-a1812 [multipartite indistinguishability]; Acacio de Barros & Holik Ent-a2007 [and negative probabilities].
@ Classical indistinguishable particles: Saunders SHPMP(06)qp/05 [reason for classical / quantum difference]; Gottesman cm/05; Dieks & Lubberdink FP(11)-a1002 [classical particles and the quantum world]; Töppel & Aiello PRA(13)-a1302 [half fermions and half bosons]; Dieks FP(14)-a1405.
@ Special cases: Peshkin PRA(03)qp/02, qp/03 [spin-0]; Wechsler a0811 [particles that "never met"]; Jakovac a1102 [identical composite objects]; Töppel et al NJP(12)-a1108 [photons, degree of indistinguishability].
@ Entanglement: Ghirardi & Marinatto FdP(03)qp/02-proc, FdP(04)qp, PRA(04)qp, OS(05)qp; Sasaki et al PRA(11); Iemini & Vianna PRA(13)-a1211 [and quantum correlations]; Balachandran et al a1205, PRL(13)-a1303; Killoran et al PRL(14); Cunden et al IJQI(14)-a1402 [and spatial separation]; Benatti et al OSID(14)-a1403 [two approaches]; Ma et al NJP(14)-a1408 [entanglement duality]; Caulton a1409; Mondal JHEP(16)-a1501 [unified formulation for distinguishable and indistinguishable particles]; Lo Franco & Compagno SRep(16)-a1511 + news pw(16)feb [from information theory]; Benatti et al OSID(17)-a1709; Compagno et al PTRS(18)-a1802 [multiparticle probability amplitude]; news pw(18)jun [from spatial overlap]; Lourenço et al PRA(19)-a1905; Morris et al PRX(20)-a1908 [as a useful quantum resource]; Benatti et al PRP(20)-a2007 [rev]; > s.a. entangled systems; Resource Theory.
@ And path integrals: Devreese et al FP(01).
@ Conventionality of indistinguishability: Belousek FP(00); Teller & Redhead FP(00).
@ Other conceptual: Redhead & Teller FP(91) [in favor of Fock space, as opposed to tensor-product Hilbert space]; de la Torre & Martín EJP(09)-a0808 [entropy]; Morganti SHPMP(09); Jantzen PhSc(11)jan [permutation symmetry is incompatible with particle ontology]; Holik et al a1305 [logical structures]; > s.a. Identity of Indiscernibles [Leibniz Principle]; Indistinguishability; Individuality; particles [discernibility, existence].

Fermions and Bosons > s.a. Bosons; fermions [including fermions without fermions]; spin-statistics theorem; statistical mechanics.
* Idea: In 3+1 or more dimensions standard particle statistics holds, which states that the wave function for two or more identical particles must be either symmetric (bosons, satisfying Bose-Einstein statistics) or antisymmetric (fermions, satisfying Fermi-Dirac statistics) under particle permutation, ψ \(\mapsto\) (−1)2s ψ; Exchanging them twice must lead to the same ψ.
@ General references: Klepikov SPU(87); Bach PLA(90); Dasgupta & Roy PLA(90); Bourdeau & Sorkin PRD(92); Arnaud et al AJP(99)mar [Fermi-Dirac statistics, illustration]; Cahill ht/06 [rotations and statistics]; Biswas Res-a1402 [Fermi-Dirac statistics, historical and pedagogical]; Zhou a1604 [statistics from Maximum Entropy].
@ Related topics: MacKenzie et al TMP(94) [quantum configuration space]; Brody & Hughston PRS(99)gq/97 [geometrical]; Isakov et al PLB(98) [observable algebra, 1D]; Oeckl JGP(01)ht/00 [and quantum groups]; Rajagopal cm/06 [superstatistics].
> Related topics: see angular momentum; Boltzmann Statistics; composite quantum systems; Configuration Space; entanglement; foundations of quantum mechanics; locality [correlations]; uncertainty relations.

Special Systems and Applications of Particle Statistics > s.a. generalized particle statistics [including anyons, fractional statistics, parastatistics].
@ Quantum field theory: Celeghini et al JPA(95)ht [quantum field theory]; Greenberg PoS-a1102 [quantum statistics and the quark model].
@ Many-particle interference: Tichy et al NJP(12) [emerging complexity]; Dittel et al PRL(18)-a1801, PRA(18)-a1801 [totally destructive].
@ Other experiments, tests, effects: Choubey & Kar PLB(06) [neutrinos, from supernovas]; Roos et al PRL(17)-a1706 [with a pair of distant atoms].
@ In curved spacetime: Goodison & Toms PRL(93)ht; Scipioni MPLA(95).
@ On discrete sets: Aneziris IJTP(94); Lulek & Lulek JPA(96) [finite sets]; Kornyak LNCS-a1107-conf, JPCS(12) [modeling of finite quantum systems]; Harrison et al CMP(14)-a1304 [n-particle quantum statistics on graphs]; > s.a. discrete geometry.
@ On other types of spaces: Ghilardi & Guadagnini NPB(01) [2+1 dimensions]; > s.a. graphs in physics.
@ Other systems: Strominger PRL(93) [black holes]; Alexanian & Balachandran PLB(02)ht/01 [geons]; > s.a. gas.
> Applications: see quantum technology; Szilard's Demon.

main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at – modified 11 may 2021