Reference Frames  

In General > s.a. coordinate systems; Covariance; Frame [more mathematical]; Observer; Relativity; tetrads.
* Idea: A smooth atlas on the spacetime manifold; In classical non-relativistic mechanics, a reference frame can be seen as a connection on a configuration space fibered over the time axis.
* Inertial: One in which the components of the spacetime metric are constants, usually taken to be an orthonormal set of coordinates, for which the metric is diag(−1, 1, ..., 1); The cornerstone of Newtonian mechanics; Transformations between inertial frames form the Poincaré group; > s.a. inertia; mach's principle.
* Rest frame: The reference frame in which the center of mass for a system is at rest; > s.a. Wikipedia page.
@ General references: Arminjon & Reifler IJGMP(11)-a1003 [formal definition].
@ Rest frame for a system: Arnold et al JHEP(14)-a1408 [absence in far-from-equilibrium quantum matter].
@ Inertial frames: Stephens FPL(96) [in quantum field theory]; Rodrigues & Sharif FP(01) [in general relativity, and local Lorentz invariance]; Smolin a1007 [limitations of the concept in non-commutative spacetime]; Baccetti et al a1302-MG13 [with Lorentz-symmetry breaking]; Saunders PhSc(13) [role in Newton's theory of motion]; Shojai & Shojai AJP(15)-a1505 [in general relativity, and the equivalence principle]; Čulina a2103.
@ Quantum reference frames: Giacomini et al nComm(19)-a1712 [and the covariance of physical laws]; Smolin a2007 [and triality]; Ballesteros et al a2012 [dynamical transformations]; Giacomini a2101 [and covariant formulation of physical laws].
@ Related topics: Meli HSPS(93) [history]; Bel gq/00 [rotation along a world-line]; Dickson SHPMP(04) [and uncertainty relations]; Llosa & Soler CQG(04) [geometric structure, and rigid motion]; Rosinger qp/05 [covariance of physical laws, general relativity and unification]; Marmo & Preziosi IJGMP(06) [coordinate-free formulation]; Jennings PRA(11)-a1011 [optimal primitive reference frames and quantum information]; > s.a. Aberration; locality.
@ In Newtonian spacetime: Coll et al a0707FP(09), PRD(09) [four causal classes]; > s.a. (post-)newtonian gravity.
@ Practical realizations: Malkin IAU(12)-a1311 [relating the international celestial and terrestrial reference frames]; Berceau et al CQG(16)-a1512 [high-performance space-time reference with an orbiting clock].
@ Preferred reference frames: Perez a1405-FQXi; > s.a. standard cosmological model; violations of lorentz symmetry.
> In other mechanical theories: see astronomy; kinematics of special relativity; relativistic quantum mechanics.
> In specific field theories: see canonical general relativity [material reference systems]; electromagnetism; types of field theories [non-local].

Accelerated / Non-Inertial Frames > s.a. lorentz group [representations]; poincaré group; unruh effect.
* Effects: In an accelerated frame Newton's first law does not hold, so fictitious inertial forces appear; In special relativity (Minkowski space) an observer in such a frame sees a causal horizon, and the inertial quantum vacuum is seen as a thermal state (this is known as the Unruh effect); > s.a. rindler space.
@ General references: Padmanabhan ASS(82) [definition of particle]; Mashhoon PRA(93) [general theory]; Marzlin PLA(96); Chicone & Mashhoon AdP(02)gq/01 [kinetic and dynamic memory]; Mashhoon in(03)gq, IJMPD(05) [non-locality]; Semay EJP(06) [constant proper acceleration]; Sardanashvily a0708 [non-relativistic mechanics in arbitrary frames, inertial forces, etc]; Mashhoon AdP(08)-a0805 [non-local]; Semon et al AJP(09)may [and the transition from special to general relativity]; Boyer FP(13)-a1204 [contrasting classical and quantum vacuum states]; Martín-Martínez et al PRA(12)-a1204 [fundamental limitations to information transfer].
@ Uniformly accelerated: Desloge AJP(89)dec [non-equivalent to uniform gravitational field]; Muñoz & Jones AJP(10)-a1003 [equivalent even in a relativistic context]; Friedman & Scarr PS(13)-a1404 [spacetime transformations]; Llosa a1507 [coordinate transformation laws and infinitesimal generators]; > s.a. non-commutative geometry.
@ Relativistic: Mitskevich 05 [relativistic physics in arbitrary frames]; Turyshev et al JMP(12)-a1109 [relativistic, in Minkowski space]; Lusanna LNP-a1310 [in special and general relativity]; > s.a. special-relativistic kinematics.
@ Rotating frames: Strauss IJTP(74); Grøn IJTP(77); Strauss IJTP(79); McFarlane IJTP(81) [appearance of a corotating disk]; Weber AJP(97)jun, Tartaglia FPL(99)phy/98 [rotating disk and Ehrenfest paradox]; Bashkov & Malakhaltsev gq/01; Klauber gq/01 [frequency and wavelength of light]; Rodrigues & Sharif FP(01) [and the Sagnac effect]; Peres gq/04|AJP [Ehrenfest paradox]; Dieks in(04)-a1001 [coordinates and spacetime measurements]; Mashhoon PRA(09)-a0903 [electromagnetic waves]; Kassner AJP(12)sep-a1109; Bel a1112 [uniformly rotating]; Kassner AJP(12)dec-a1302 [anisotropic one-way speeds of light, resolving Selleri's paradox]; Manjarres et al AJP(13)aug [work and energy]; > s.a. Mössbauer Effect; rotation; Sagnac Effect.
@ In quantum mechanics: Mensky TMP(98)gq/97 [thermal particles and Unruh effect]; Angelo & Ribeiro JPA(12); Klink & Wickramasekara AP(14) [violations of the non-relativistic equivalence principle]; Vanrietvelde et al a1809 [quantum reference frames and relativistic physics]; Höhn Univ(19)-a1811 [and general covariance]; > s.a. entanglement phenomenology [frame dependence].
@ In field theories: Lynden-Bell et al AP(99) [gravity and electromagnetism]; Lusanna a0707-conf [in general relativity, observables and constraints]; Lenz a0808 [gauge fields]; Maluf & Ulhoa AdP(10)-a1009 [electrodynamics]; Banks & Fischler a1301 [holographic spacetime formalism, and effective field theory]; Boyer FP(13) [stochastic electrodynamics vs QED]; Lynch a1504-GRF [acceleration-induced particle physics processes]; Dasgupta a1508 [quantum field theory].
> Related topics: see newton-cartan theory; quantum field theory effects [negative energies]; Saha Equation; thermal radiation.

Related Concepts
* Quasilocal frame: A choice of a two-parameter family of timelike worldlines comprising the worldtube boundary of the history of a finite spatial volume.

main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at – modified 29 mar 2021