Numerical Simulations of Black Holes |
In General > s.a. black holes;
horizons / initial-value formulation.
* Approach: Traditionally,
use finite difference methods, often plagued by instabilities; The three stages
of binary black hole evolution require different techniques (pre-merger uses PN
formalism up to O(v7),
merger is numerical, post-merger–ringdown uses quasinormal modes).
* 2003: Stable gauge, M Alcubierre.
* 2004: Stable "long-term"
evolution with first full binary orbit, B Brügmann at AEI.
* 2005: First full orbit and
merger, achieved by various groups with technique by F Pretorius that uses
punctures rather than excisions.
* 2006: M Campanelli et al,
J Baker et al, moving punctures to handle singularities.
* 2010: High-accuracy
simulations of inspiral and merger events are done, but still take way too
much time to be able to run many.
@ References: Sperhake et al a1107/CRAS [rev].
Single Black Holes > s.a. black-hole solutions.
@ General references: Brügmann PRD(96)gq [adaptive mesh];
Gómez et al (BBHGCA) PRL(98)gq;
Hübner CQG(99) [boundaries];
Scheel et al PRD(02);
Brandt et al CQG(03)gq/02 [data];
Anderson & Matzner FP(05)gq/03 [long term evolution];
Bishop et al PRD(03) [Schwarzschild + massive particle];
Tichy PRD(09)-a0911 [long-term evolution, pseudospectral methods];
Yo et al PRD(12)-a1205 [modified BSSN formulation, numerical stability].
@ From particle collisions: Choptuik & Pretorius PRL(10)-a0908 [ultra-relativistic],
news sci(10)jan.
@ Spherically symmetric: Bona et al PRD(95)gq/94;
Thornburg gq/99/PRD;
Brewin gq/00-MG9;
Ruíz et al GRG(08)-a0706 [and axisymmetric, regularization];
Brewin PRD(12)-a1101 [Schwarzschild spacetime, Einstein-Bianchi system].
@ Axisymmetric: Brandt & Font gq/97-MG8;
Gleiser al et PRD(98)gq/97 [spinning black hole];
Garfinkle & Duncan PRD(01)gq/00 [Brill waves];
Rinne PhD(05)gq/06;
Vasset et al a1002-MG12 [excised Kerr spacetime].
@ Perturbations:
Krivan et al PRD(97) [Kerr, effects];
Brandt et al gq/97-MG8;
Papadopoulos et al PRD(98)gq [gravitational waves];
Loustó CQG(05)gq [fourth-order algorithm, extreme-mass-ratio Zerilli & Regge-Wheeler];
> s.a. black-hole perturbations.
@ Other black holes: Karkowski APPB(06)gq [boosted Kerr];
Witek et al PRD(10)-a1004 [in AdS spacetime].
@ Higher-dimensional: Headrick et al CQG(10) [static Kaluza-Klein black holes];
Wiseman a1107-ch [static and stationary].
Binary Black Holes > see numerical simulations of binary black holes.
Multiple Black Holes
> s.a. binaries; models in numerical
relativity; relativistic gravitating objects [two-body problem].
@ General references: Arbona et al PRD(98)gq/97;
Brandt & Brügmann PRL(97)gq,
gq/97-MG8 [punctures];
Loustó & Zlochower PRD(08)-a0710,
Galaviz et al PRD(10)-a1004 [moving-puncture approach].
@ Apparent horizons: Anninos et al PRL(95)gq/94;
Baumgarte et al PRD(96);
Thornburg PRD(96);
Schnetter gq/02.
@ Other horizons: Schnetter et al PRD(06)gq [dynamical];
Jaramillo et al PRD(07)gq/06 [isolated, boundary conditions implementation].
@ Horizon finders, trackers:
Diener CQG(03) [full 3D];
Caveny et al PRD(03)gq;
Thornburg LRR(07)gq/05;
Lin & Novak CQG(07)gq [3D];
Cohen et al CQG(09)-a0809;
Brooks et al GRG(18) [and Cartan invariants].
@ Related topics: Kidder et al PRD(00)gq [1D, pseudospectral collocation method];
Alcubierre & Brügmann PRD(01)gq/00,
et al PRD(01)gq [excision];
Yo et al PRD(02)gq [stability].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 8 apr 2018