Motion of Relativistic Gravitating Bodies |
In General
> s.a. gravitational chaos and phenomenology
[2-body, etc]; tests of general relativity with orbits.
* Idea: It can be shown that a material
object moves along a geodesic in a suitable small-size and small-mass limit; The first
corrective effect is that orbits of radiating particles decay from energy loss (has
been observed for the binary pulsar).
@ General references:
Asada et al 11 [including charge, spin, and gravitational radiation effects];
Oltean et al PRD(20)-a1907 [equations of motion from conservation laws].
@ Small-size limit: Ehlers & Geroch AP(04)gq/03;
Poisson LRR(04);
Futamase et al PRD(08)-a0811 [small charged black hole];
Gralla PRD(10)-a1002;
Poisson et al LRR(11)-a1102;
Gralla & Wald CQG(11) [coordinate freedom];
Gralla PRD(13)-a1303 [mass and charges as explicit surface integrals];
Geroch & Weatherall CMP(18)-a1707;
> s.a. test-body motion [geodesics
and extended-object corrections, semiclassical corrections].
@ Radiation reaction, Schwarzschild: Warburton et al PRD(12)-a1111 [evolution of inspiral orbits];
Diener et al PRL(12)-a1112 [charged particle, fully self-consistent orbits and waveforms].
@ Radiation reaction, Kerr: Ori PLA(95)gq,
PRD(97) [Carter invariants];
Mino et al PRD(97);
Hughes PRD(00)gq/99,
PRD(01)gq;
Glampedakis & Kennefick PRD(02)gq,
et al PRD(02) [inspiral];
Sago et al PTP(06)gq/05,
Sago & Fujita PTEP(15)-a1505 [evolution of orbit];
> s.a. gravitational self-force.
@ In alternative theories of gravity: Esposito-Farèse FTP(11)-a0905-ln.
Two-Body Problem
> s.a. black-hole thermodynamics; chaos
for gravitating bodies; classical systems.
* Idea: As in Newtonian dynamics,
can be expressed as a 1-body problem with reduced mass in a fixed potential.
* Modeling: The stationary ones
are modeled in general relativity as vacuum or perfect fluid spacetimes with a
helical Killing vector field ka,
the corotating generator of time translations; Such systems are not asymptotically
flat, but have asymptotic behavior corresponding to equal amounts of ingoing and
outgoing radiation.
@ General references: Damour a1312-fs [rev];
Foffa et al PRD(17)-a1612 [effective field theory approach].
@ Spin-orbit coupling:
Porto CQG(10);
Iorio GRG(12)-a1012 [exact, and spin-spin effects];
Hartung & Steinhoff AdP(11)-a1104 [post-Newtonian spin-orbit Hamiltonian];
Bini & Damour PRD(14)-a1404;
Levi & Steinhoff JCAP(16)-a1506,
JCAP(16)-a1506 [effective field theory approach, up to 4PN order].
@ Compact binaries:
Portegies Zwart & McMillan ap/99-conf [merger rates];
Postnov & Prokhorov ap/99-conf;
Baumgarte PRD(00)gq [circular orbits];
Gourgoulhon et al PRD(02)gq/01 [spacetime approach];
Alvi PRD(01)gq [E and L in inspiral];
Hartl & Buonanno PRD(05)gq/04 [precessing, PN];
Königsdörffer & Gopakumar PRD(05)gq [eccentric spinning compact binaries, PN];
Futamase & Itoh LRR(07);
Damour a0704-ln;
Foffa & Sturani CQG(14) [effective field theory methods];
Kuntz PRD(20)-a2003 [half-solution];
Kuntz a2010-PhD [general relativity vs scalar-tensor theories].
@ Effective 1-body approach: Buonanno & Damour PRD(99)gq/98;
Fiziev & Todorov PRD(01)gq/00;
Damour in(14)-a1212 [rev].
@ Full 2-body problem: Laguna PRD(99)gq;
Damour in(87),
et al PRD(00)gq [ADM];
Damour PRD(01)gq [spinning black holes];
Blanchet CRAS(01)gq;
Steinhoff et al PRD(08)-a0809,
Hergt & Schäfer PRD(08)-a0809 [spin-spin interaction];
Kol & Smolkin PRD(09) [dressed-perturbation-theory approach];
Bini et al PRD(15)-a1510 [spin-dependent two-body interactions from gravitational self-force];
> s.a. types of black holes [binaries].
@ With cosmological constant: Jetzer & Sereno PRD(06)ap;
Bisnovatyi-Kogan & Merafina IJMPD(19)-a1906.
Post-Newtonian Expansion > s.a. classical particles;
gravitational collapse; gravitational
self-force; particles in schwarzschild spacetime.
* Applicability: It works
best for pairs of objects with values of the mass ratio far from 1, and
breaks down when the objects are very close.
@ General references: Blanchet a0907-ln;
De Laurentis a1004.
@ 1PN:
Itoh et al PRD(00)gq/99 [strong field];
Racine & Flanagan PRD(05) [arbitrarily structured bodies].
@ 2PN: Gergely PRD(00)gq [evolution of spinning binaries].
@ 2.5PN: Kidder et al PRD(93);
Tagoshi et al PRD(01)gq/00 [spinning];
Itoh et al PRD(01)gq.
@ 3PN: Damour et al PRD(00)gq/99 [invariants];
Blanchet & Faye PLA(00)gq,
PRD(01)gq/00;
Damour et al PRD(00)gq [last stable orbit],
PRD(01)gq/00 [approaches];
Jaranowski & Schäfer AdP(00)gq-proc;
Porto & Rothstein PRL(06)gq,
gq/07-MG11 [spin-spin interaction].
@ 3.5PN: Blanchet et al PRD(02)gq/01 [inspiral];
Pati & Will PRD(02)gq [radiation reaction].
@ Related topics: Rasio ap/99-conf [final state];
Arminjon NCB(01)gq [weak field];
Blanchet in(01)gq/02 [accuracy of approximation];
Iorio ASS(07)gq/04 [mean anomaly advance];
Porto & Sturani gq/07-proc [and constraints on couplings];
Foffa & Sturani PRD(13)-a1206 [at 4PN order, up to quadratic terms in G].
Other Topics and Backgrounds
> s.a. dynamics of gravitating bodies.
@ Three-body problem: Imai et al PRL(07)gq [choreographic solution in general relativity];
Loustó & Nakano CQG(08)-a0710 [post-Newtonian].
> Related topics:
see Flyby Anomalies;
kaluza-klein theory.
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 26 may 2021