Perturbations in General Relativity |
Linearized Einstein Equation > s.a. gauge
transformations; hamilton-jacobi theory.
* Idea: The problem of finding
a field γab which
describes a small departure from some gab
(weak field if gab
= ηab); Time-dependent
perturbations can describe propagating gravitational waves and/or matter that
are assumed not to affect the background spacetime.
* Linearized metric perturbation:
If gab(λ)
is a one-parameter family of solutions, such that gab(0)
= gab, define
γab := dgab(λ) / dλ|λ = 0 .
* Vacuum Einstein equation: The equation "linearized Rab = 0"; If γ:= γaa and Rabcd refers to the unperturbed metric gab,
∇m∇m γab + 2 Rambn γmn − 2 ∇(a∇|m| (γb)m − \(1\over2\)γ δb)m) = 0 , or ∇m∇m γab − 2 ∇m∇(a γb)m + ∇a∇bγ = 0 .
* Einstein equation with matter: For matter fields Φ (with perturbation φ) we write G (1)ab = 8πG T (1)ab, where the superscript (1) denotes a first-order perturbation; > s.a. metric perturbation.
Around Minkowski Space > s.a. duality;
stress-energy pseudotensor; gauge transformations.
* Idea: The weak-field approximation;
It results in a wave equation that describes the propagation of gravitational waves,
or the spin-2 graviton field, with matter stress-energy-momentum as source.
* Wave equation: In terms
of γ'ab:=
γab −
\(1\over2\)ηabγ,
the linearized equation is −\(1\over2\)
∂c∂c
γ'ab
+ ∂c∂(b
γ'a) c
− \(1\over2\)ηab
∂c∂d
γ'cd
= 8πG T (1)ab,
which, with the right choice of gauge, ∂b
γ'ab = 0, becomes the wave equation,
∂c∂c γ'ab = −16πG T (1)ab .
* Recovering the non-linear theory:
The full, covariant version of the theory can be derived by self-coupling from its
linear, flat-spacetime version.
@ General references: Weyl AJM(44);
in Wentzel 49 [vacuum, graviton];
Geroch notes on general relativity [short and clear];
in Wald 84;
Ichinose & Kaminaga PRD(89) [ambiguity];
Jezierski CQG(02)gq/01;
Calabrese et al CMP(03)gq/02 [boundary conditions];
Bishop CQG(05)gq/04 [Bondi-Sachs form];
Bernabéu et al PRD(10)-a0910 [with cosmological constant];
> s.a. integrable systems.
@ Hamiltonian form: Rosas-Rodríguez JPCS(05)gq;
Ghalati ht/07 [constraint analysis];
Green et al EPJC(11)-a0710;
Contreras & Leal IJMPD(14)-a1304 [in Ashtekar variables].
@ Special solutions: Tolish & Wald PRD(14)-a1401 [particle on a null geodesic, retarded solution];
> s.a. gravitational waves; phenomenology of gravity.
Around Other Spacetimes > s.a. black-hole perturbations;
collapse; cosmological perturbations
[and structure formation]; metric matching.
@ de Sitter spacetime: Losic & Unruh PRL(08)-a0804;
Montaquila PhD(09)-a1004 [electromagnetic and gravitational waves];
Bini et al GRG(12)-a1103 [and geodesic motion].
@ Spherical:
Moncrief AP(74),
AP(74);
Gerlach & Sengupta PRD(79),
PRD(79);
Karlovini CQG(02)gq/01 [axial];
Nolan PRD(04)gq [gauge-invariant, interpretation];
Brizuela et al PRD(06)gq,
PRD(07)gq [second- and higher-order];
Clarkson PRD(07)-a0708 [covariant];
Brizuela & Martín-García CQG(09)-a0810;
Chaverra et al PRD(13)-a1209 [self-gravitating spherically symmetric configurations];
Brizuela CQG(15)-a1505;
> s.a. schwarzschild spacetime.
@ Other spacetimes: Gasperini & Giovannini CQG(97)gq/96 [anisotropic];
Konoplya PLA(00)gq/99 [any symmetry];
Sarbach et al PRD(01)gq/00 [static, in terms of Kab];
Dittrich & Tambornino CQG(07)gq [any symmetry-reduced];
Mars et al PRD(08)-a0806 [Einstein-Straus swiss-cheese model matched to Oppenheimer-Snyder];
Oota & Yasui IJMPA(10) [generalized Kerr-NUT-de Sitter spacetime];
Pitrou et al CQG(13)-a1302 [homogeneous cosmologies, xPand algorithm];
> s.a. kerr, Reissner-Nordström,
Robinson-Trautman, Vaidya Spacetime.
@ Higher dimensions: Petrov CQG(05)gq [conserved currents and Deser-Tekin charges];
Durkee & Reall CQG(11)-a1009;
> s.a. kaluza-klein models.
@ Tails, Huygens principle: Waylen PRS(71) [relation to integral form of general relativity];
Wünsch GRG(90) [and Cauchy problem].
> Other:
see bianchi I and other bianchi models;
gravitational waves; kantowski-sachs;
Lemaitre-Tolman-Bondi; FLRW models;
petrov classes; phenomenology of inflation.
Linearization Stability > s.a. numerical
general relativity and models;
self-dual gravity.
* Idea: Because general relativity
is a non-linear theory, solutions to the linearized field equations yield spurious
solutions (not tangent to any 1-parameter family of solutions) in the spatially
compact case (due to fixed points of the action of the diffeomorphism group).
* Integrability: A solution
of the linearized Eistein equation is integrable iff the Taub conserved
quantities vanish.
@ General references: Moncrief JMP(75),
JMP(76);
Arms JMP(77) [Einstein-Maxwell],
JMP(79) [Einstein-Yang-Mills theory];
refs in Bao et al CMP(85), p342;
Damour & Schmidt JMP(90);
Bruna & Girbau JMP(99),
JMP(99),
JMP(05) [around FLRW spacetimes];
Garecki a1406/APPB [using the canonical superenergy density];
Saraykar a1612,
Saraykar & Janardhan AJMCR-a1709 [as a generic property];
Altas & Tekin a1903
[Taub charge as integral constraint, from second-order perturbation theory].
@ In other gravity theories:
Altas a1808-PhD.
Gauge Dependence and Invariants > s.a. black-hole
perturbations; FLRW models; gauge
transformations; Taub Numbers.
* Results: A perturbed
quantity is gauge invariant only if the corresponding unperturbed quantity
is zero, a constant scalar field, or a linear combination of products
of δs with constant coefficients.
@ Curvature-based: Anderson et al PRD(98)gq;
Brodbeck et al PRL(00)gq/99 [with matter].
@ General references: Novello et al PRD(95),
PRD(95) [minimal set of observables];
Anderson PRD(97)gq/96 [gravitational waves];
Malik & Wands gq/98;
Bel gq/06
[special gauge transformations and superposition of solutions];
Giesel et al CQG(10)-a0711,
CQG(10)-a0711 [manifestly gauge-invariant];
Nakamura a1103,
a1112-proc,
IJMPD(12)-a1203,
a1209-MG13 [gauge-invariant, general background spacetime].
@ Higher-order perturbations: Bruni et al CQG(97)gq/96,
gq/96-proc;
Sonego & Bruni CMP(98)gq/97 [gauge dependence];
Bruni & Sonego CQG(99)gq [observables];
Bruni et al CQG(03)gq/02,
Nakamura PTP(03)gq [2-parameter];
Clarkson PRD(04)ap/03 [covariant];
Nakamura gq/04-proc [framework],
PTP(05)gq/04,
a0711-proc [second-order, gauge-invariant];
Nakamura CQG(11)-a1011,
a1012-proc,
a1101 [gauge-invariant];
Nakamura CQG(14)-a1403 [gauge-invariant variables for any order perturbations];
> s.a. cosmological perturbations;
minkowski space [stability].
Other References > s.a. cosmology [effects];
einstein's equation [approximations]; linearized
quantum gravity; scalar-tensor theories.
@ General: Sachs in(64);
in Misner et al 73, §18.1;
Stewart & Walker PRS(74);
Beig JPA(76);
Gowdy JMP(78);
in Wald 84;
Geroch & Lindblom JMP(85);
Gunnarsen CQG(89);
Bekaert et al PRD(03)ht/02 [dual formulation];
Sopuerta et al gq/02-conf [2-parameter];
Speliotopoulos & Chiao PRD(04)gq/03 [and particles];
Petrov MUPB(04)gq [conserved currents];
Suvorov & Lun a1401;
> s.a. tensor decompositions.
@ Obtaining solutions: Wald PRL(78);
Torres del Castillo GRG(90).
@ Instabilities and constraints on perturbations:
Traschen PRD(85);
Tod GRG(88);
Kastor & Traschen PRD(92);
Deruelle et al CQG(97).
@ Discretization: Gambini & Pullin; Di Bartolo et al JMP(05)gq/04 [consistent].
@ Characteristic problem: Frittelli PRD(05)gq/04 [first-order reduction].
@ Other formulations and theories: Jezierski GRG(95)gq/94 [metric vs spin-2 formulation];
Baykal & Dereli a1612 [in terms of differential forms];
Deser a1705 [bootstrapping the full covariant theories];
Izaurieta et al EPJC(19)-a1901 [with torsion];
> s.a. conformal gravity; higher-order
theories; massive gravity.
@ Related topics: Low CQG(99)gq/98 [speed of perturbations];
Torres del Castillo & Solís-Rodríguez JMP(99) [self-dual perturbations];
Cartin gq/99 [Lanczos potential];
Nieto MPLA(05) [linearized general relativity as gauge theory];
Brizuela et al GRG(09)-a0807 [xPert computer algebra package];
Anastopoulos PRD(09)-a0902 [backreaction].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 26 jul 2019