Black-Hole Geometry and Topology |
Black-Hole Interior > s.a. quantum black holes.
@ General references: Frolov et al PRD(90);
Poisson & Israel PRD(90);
Balbinot et al PLA(91);
Bonanno et al PRD(94)gq;
Burnett PRD(95)gq [journey inside a black hole];
Artemova & Novikov ap/02 [intro];
Novikov gq/03;
Hamilton & Pollack PRD(05)gq/04,
PRD(05)gq/04 [self-similar, accreting, charged];
Culetu IJMPA(09)ht/07;
Lewis & Kwan PASA(07)-a0705 [maximizing survival time];
Hamilton & Polhemus a0903 [view from the inside];
Hamilton & Polhemus PRD(11)-a1010,
Hamilton PRD(11)-a1010,
PRD(11)-a1010,
a1108 [realistic accreting, rotating black holes];
Dokuchaev CQG(11)-a1103 [interior bound periodic orbits],
G&C(12)-a1203 [life inside?];
Culetu PLA(12) [Rindler-type geometry];
Smith & Mann CQG(14)-a1309 [probing the interior with an Unruh-DeWitt detector outside the horizon];
Nomura et al PRL(15)-a1412 [in quantum gravity];
Ganguly et al CQG(15)-a1411 [global structure, dynamical systems approach];
Brustein et al PRD(17)-a1701 [and the detection of gravitational waves];
Brustein & Medved PRD(19)-a1805 [interior matter];
Alesci et al PLB(19)-a1904 [in quantum gravity];
Hamilton a1907-MGXV [astronomically realistic];
Oshita et al a2001 [quantum black hole seismology].
@ Specific theories and black-hole types:
Krori et al PLA(88) [higher-dimensional, Schwarzschild-like];
Donets et al PRD(97) [Einstein-Yang-Mills].
@ Appearance: news disc(11)jun [Andrew Hamilton's visualization].
@ Volume: DiNunno & Matzner GRG(10)-a0801;
Christodoulou & Rovelli PRD(15)-a1411;
Bengtsson & Jakobsson MPLA(15)-a1502 [large interiors];
Ong JCAP(15)-a1503 [volume not necessarily a monotonically increasing function of surface area].
@ Charged black holes: Dafermos CPAM(03)gq;
Hwang & Yeom PRD(11);
Henry et al a1512
[rotating, plots of all independent curvature invariants].
Geometry in General > s.a. black-hole solutions
[including deformed black holes]; Supertranslations.
* Hawking's theorem: If Λ
= 0, the constant time sections of the horizon of stationary black holes are
topologically spheres.
* Angular momentum-area inequality:
The angular momentum J of an axially symmetric black hole with surface
area A satisfies
\[ \vert J\vert \le {A\over8\pi}\sqrt{\left(1-{\Lambda A\over4\pi}\right)\left(1-{\Lambda A\over12\pi}\right)} .\]
where Λ is the cosmological constant; The bound is saturated for
the extreme Kerr-de Sitter family of metrics.
* Firewall: 2012, The idea
that information escaping from a black hole ignites a firewall at the event
horizon that would consume anything falling in, a claim which contradicts the
general relativity assumption ("no drama" scenario) that locally
nothing happens at the horizon; 2014, Hawking claims that black holes have
apparent horizons rather than event horizons, thus avoiding the paradox; 2017,
There is no concrete model for a firewall yet, but some phenomenological
consequences from accreting matter and emitted radiation and neutrinos have
been worked out.
@ (Near-)horizon geometry:
Balasubramanian & Larsen NPB(98) [4D];
Cvetič & Larsen NPB(98) [5D];
Medved et al CQG(04)gq [static 4D];
Kang et al PRD(04)ht [any dimension];
Kunduri CQG(11)-a1104-GR19 [in 4D and 5D];
Kunduri & Lucietti LRR(13) [extremal black holes];
Susskind a1403 [and computational complexity];
Chruściel et al CQG(18)-a1707 [uniqueness];
Barrow a2005 [fractal horizon geometry];
Murk & Terno a2010;
> s.a. black-hole entropy.
@ Inequalities: Dain in(09)-a0911 [angular momentum-mass inequality];
Jaramillo et al PRD(11)-a1106 [non-vacuum spacetimes];
Dain et al CQG(12)-a1109,
Simon CQG(12)-a1109 [area-charge inequality];
Yazadjiev PRD(13)-a1210 [including charge, Einstein-Maxwell-dilaton theory];
Dain GRG(14)-a1401 [rev];
Gabach Clement et al CQG(15)-a1501 [in cosmological spacetimes];
Dain PRD(15)-a1506 [between size, charge, angular momentum and energy];
Csukás GRG(17)-a1607 [using quasilocal mass, spherical symmetry];
Alaee et al AHP(17)-a1608 [mass-angular momentum-charge, in 5D minimal supergravity];
Jaracz & Khuri PRD(18)-a1802 [for general bodies];
> s.a. gravitating bodies.
@ Area product formulae: Cvetič et al PRL(11)-a1011;
Page & Shoom a1504 [universal area product].
@ Firewall: Almheiri et al JHEP(13);
Marolf & Polchinski PRL(13)
+ Karch Phy(13);
Mathur & Turton NPB(14)-a1306;
Nomura PRD(13)-a1308 [theory of horizons];
news SA(13)oct;
Berenstein & Dzienkowski a1311 [numerical evidence];
Hossenfelder PRD(15)-a1401 [a local observer does not notice
the presence of the boundary and does not encounter a firewall];
Devin a1401 [rev];
Hawking a1401
+ news ns(14)jan,
sa(14)mar;
Israel a1403 [the horizon as a hot massless shell, 2D model];
Abramowicz et al PRL(14) [upper limit of \(1/(8\pi M)\) to the surface density of a firewall];
Moffat & Toth a1404 [and Karlhede's invariant];
Stoltenberg & Albrecht PRD(15)-a1408 [questioning firewalls];
Dündar MS-a1409 [overview];
Germani & Sarkar FdP(16)-a1502 [firewalls as artefacts];
Hotta & Sugita PTEP(15)-a1505 [firewalls generically do not emerge];
Chen et al PRL(16)-a1511 [firewalls outside the horizon];
Ori GRG(16) [alternative viewpoint based on semiclassical gravity];
Thanjavur & Israel a1601;
Nomura & Salzetta PLB(16)-a1602 [firewalls need not exist];
Bryan & Medved AHEP-a1603 [and information];
news pw(18)may [and gravitational-wave echoes];
Rovelli a1902 [subtle unphysical hypothesis];
> s.a. entanglement in field theory; matter near black holes.
@ Related topics:
Anderson & Mull gq/97,
gq/97-MG8 [constraints on static geometry];
Abramowicz & Sonego 02 [optical geometry];
Parikh PRD(06)ht/05 [3-volume];
Álvarez NPPS(09)-a0904 [without coordinates];
Gibbons AIP(12)-a1201 [results and conjectures for 4 and higher dimensions];
Bini et al IJGMP(15)-a1509 [stationary spacelike slicings];
> s.a. Smarr Formula [for black-hole mass].
> Singularities: see
spacetime singularities; cosmic censorship;
models for topology change [censorship, genus].
> Related topics:
see event horizons; horizons
[isolated, dynamical, trapping]; Mass Inflation.
Other Topologies and Higher Dimensionalities
* Black strings: Gregory &
Laflamme argued that an instability along the extra dimension causes the
Schwarzschild black string to break up into disjoint black holes; Horowitz
and Maeda derived bounds on the rate at which the smallest sphere can pinch off.
@ Black rings:
Emparan & Reall CQG(06) [rev];
Elvang et al JHEP(06)ht [dynamics, instability];
Iizuka & Shigemori PRD(08) [in 4D];
Chruściel & Cortier JDG-a0807 [geometry];
Astefanesei et al JHEP(09)-a0909 [equilibrium conditions];
Kleihaus et al a1205
→ PLB(13) [6D];
Dadras et al EPL(12)-a1207;
Armas & Blau JHEP(15)-a1504 [helicoidal black rings and black tori];
Chervonyi PRD(15)-a1510 [in D > 5];
> s.a. laws of black-hole dynamics.
@ Black strings: Gregory & Laflamme PRL(93)ht,
NPB(94)ht,
Horowitz & Maeda PRL(01)ht,
Choptuik et al PRD(03)gq,
Kol & Sorkin CQG(04)gq [instability];
Kol & Wiseman CQG(03)ht;
Kol et al PRD(04)ht/03 [and black holes];
Cardoso & Dias PRL(06)ht [and membrane];
Kleihaus et al JHEP(06)ht [non-uniform];
Chowdhury et al NPB(07) [phase transition];
Yoo et al IJGMP(11) [slowly rotating, Gregory-Laflamme instability];
Gregory a1107-ch [rev];
Lehner & Pretorius a1106-ch [Gregory-Laflamme instability, final state];
Ida JMP(17)-a1609 [no arbitrarily long black strings].
@ In higher dimensions: Helfgott et al JHEP(06)ht/05;
Galloway & Shoen CMP(06);
Rácz CQG(08)-a0806 [proof of generalized Hawking theorem];
Hollands et al AHP(11)-a1002 [5D, restrictions on topology];
Ida & Okamoto PTP(12)-a1105;
Galloway a1111-ch;
Lessel a1210;
Taliotis PRD(12);
> s.a. higher-dimensional
solutions; uniqueness and hair.
@ Other topology:
Galloway CMP(93);
Chruściel & Wald CQG(94)gq;
Chruściel et al CQG(06) [no degenerate components for static vacuum];
Bambi & Modesto PLB(11)-a1107 [in lqg and other gravity theories];
Monte IJMPCS(12)-a1111 [Schwarzschild black hole];
Klemm PRD(14)-a1401 [non-compact manifolds with finite volume];
Bohn et al PRD(16)-a1606 [toroidal topology, binary merger simulation];
Khuri et al LMP(18)-a1804 [restrictions];
Nampalliwar et al a2008
[tests with with electromagnetic observations];
> s.a. horizons; modified
theories; black-hole phenomenology.
Other References > s.a. Antigravity;
particle effects and models;
thermodynamics [phase transitions]; black-hole
phenomenology; wormholes.
@ Membrane paradigm: & Damour (78);
Price & Thorne PRD(86),
SA(88)apr; Thorne et al 86;
Carter in(92)ht/04 [equilibrium geometry];
Parikh & Wilczek PRD(98)gq/97;
Straumann in(98)ap/97;
Parikh PhD(98)ht/99;
Cardoso et al IJMPD(08)-a0705 [black objects in higher dimensions];
Mathur GRG(10)-a1005-GRF
= IJMPD(10)
[realized by degrees of freedom just outside the horizon];
Grumiller & Sheikh-Jabbari IJMPD(18)-a1805-GRF [and soft hair].
@ Membrane paradigm, alternative gravity theories:
Chatterjee et al CQG(12)-a1012 [in f(R) gravity];
Jacobson et al PRD(17)-a1107 [in Einstein-Gauss-Bonnet gravity, D ≥ 5];
Kolekar & Kothawala JHEP(12)-a1111 [Lanczos-Lovelock gravity].
@ Other approaches / models:
Abramowicz & Sonego 02 [optical geometry];
Gourgoulhon & Jaramillo NAR(08)-a0803-proc [hypersurfaces foliated by trapped surfaces];
Skenderis & Taylor PRP(08)-a0804 [fuzzball proposal];
Hamilton & Lisle AJP(08)jun [river model];
Caldarelli et al JHEP(09)-a0901 [lump of fluid].
@ Non-singular:
Newman GRG(89);
Berman gq/04;
Hayward PRL(06) [formation + evaporation];
Pérez et al IJTP(14) [instability of Mbonye-Kazanas regular interior model];
Barceló et al CQG(15)-a1409 [time-symmetric bounce];
Chinaglia a1805 [no-go theorem];
Miao & Yang a2009 [connection to black-hole thermodynamics and dynamics]; > s.a. 4D and modified solutions.
@ Related topics: Laughlin IJMPA(03)gq-fs [vacuum phase boundaries];
Mei et al JHEP(13)-a1305 [effective action for a fluctuating horizon].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 28 feb 2021