![]() |
General Concepts
> s.a. lorentz group; minkowski spacetime;
spacetime models; time / reference
frames; time [clock hypothesis].
* Interval: A useful expression is
ds2 = −c2
t1t2,
where... @ Ohanian & Ruffini 94, p70.
* Boost: A Lorentz 'rotation'
in a space-time plane in Minkowski space, represented by a transformation
of coordinates of the form t' = t cosh u +
x sinh u, x' = t sinh u
+ x cosh u, for a boost along the x-axis
(with tanh u = β); The coordinates y and
z in this case are unchanged, and the boost vector field is
v:= x ∂/∂t + t ∂/∂x ;
In general relativity, the corresponding conserved quantity (center of energy, > see conserved quantities) for asymptotically flat spacetimes is
M(N) = ∫∞ [N(∂a qbc − ∂b qac) − N,a (qbc − fbc) + N,b (qac − fac)] qac qbd dSd .
* Four-velocity: Defined, for a
timelike curve xm(τ),
as um
= dxm/dτ,
a unit timelike vector.
* Velocity composition:
For collinear 3-velocities v1
and v2, u
= (v1+v2)
/ (1+v1v2
/ c2); It is neither commutative nor associative,
due to the presence of Thomas precession.
@ Lorentz "rotations":
Terrell PR(59);
Weisskopf PT(60)sep;
in Taylor & Wheeler 92, 92-93;
@ Simultaneity:
Havas GRG(87);
Sarkar & Stachel PhSc(99)jun;
Giulini gq/00;
Mamone FP(01);
Janis in(02);
Scherr et al AJP(02)dec [student beliefs];
Bolós et al IJTP(02)gq/05 [spacelike vs lightlike];
Minguzzi gq/05-proc [in special and general relativity];
Grünbaum FP(10) [re conventionality of simultaneity];
Besnard FP(12)-a1104 [in Minkowski spacetime];
Leardini a1310 [apparent paradox];
> s.a. EPR paradox.
@ Velocity: Lévy-Leblond AJP(80)may;
Mermin AJP(83)dec,
90 ch19 [addition];
Sen JMP(90) [relative velocities];
Ungar FP(00) [composition];
Mathews AJP(05)jan [and acceleration];
O'Donnell & Visser EJP(11)-a1102 [including Wigner rotation and Thomas precession];
Kocik AJP(12)aug-a1408 [geometric diagram for addition of velocities].
> Online resources: see
Kristian Evensen's interactive diagram.
Effects
* Time dilation:
T = γ T0;
Argue with bouncing photon clock; First tested in 1938 to within 1% of
predictions in an experiment by Herbert Ives and G R Stilwell on the
transverse Doppler effect in an atomic beam; Directly seen in the momentum
dependence of the lifetimes of muons in 1941 and kaons in 1952; Verified
with cosmic ray muon decays and with GPS tests; 2007, best measurement by
Gwinner et al has accuracy quantified by a "Mansouri-Sexl parameter"
of less than 8.4 × 10−8.
* Length contraction:
L = γ−1
L0; Argue based on time
dilation and L/T0
= L0/T (can be illustrated with
the example of a long car entering a garage); Has not been directly seen experimentally;
> s.a. Lorentz-FitzGerald Contraction.
* Doppler shift: Components of vectors
normal to β are invariant, so k' perp
= kperp; for other ones,
k' 0 = γ
(k0 − β ·
k) , k' 1
= γ (k1 −
βk0) ;
for light ω' = γω
(1 − βcosθ) , tanθ'
= sinθ/[γ(cosθ − β)] .
@ Transformations: Brehme AJP(62)jul [Lorentz and Galilei, geometrical];
Lévy-Leblond AJP(76)mar,
Lévy AJP(07)jul [derivation];
Janssen SHPMP(09) [kinematical vs dynamical explanations];
Cazaroto a1307 [quantum mechanical interpretation?].
@ Length contraction: Rindler AJP(61)jun [paradox];
Nikolić AJP(99)nov-phy/98 [accelerated rod];
Pierce AJP(07)jul [and lock and key paradox];
Redžić EJP(08) [interpretations];
Miller AJP(10)jun;
Klevgard a1602;
Walstad a1711 [without relativity];
Crouse & Skufca L&A-a1803 [in discrete spacetime];
Hoffmann a1804
[and spreading of relativistic probability densities];
Ceresuela & Llosa CJP(19)-a1808 [Bell's accelerated spaceships paradox].
@ Appearance of objects: Penrose PCPS(59) [sphere];
Terrell PR(59);
Weisskopf PT(60)sep;
in Van Bladel 84;
Peres AJP(87)jun;
Blackman EJP(98)ap/97;
Field AJP(00)apr;
Morava a0804 [in terms of groups].
@ Time dilation: Bohm & Hiley AJP(85)aug [and active interpretation of boosts];
Saathoff et al PRL(03) [deviations < 2.2 × 10−7];
Gwinner MPLA(05) [tests, rev];
Harvey & Schücking PT(05)mar [history, and gravitational time dilation];
news pw(07)nov [best measurement yet];
Christov FP(10) [reinterpretation of the Ives-Stilwell experiment];
news pt(10)nov [seen at 10 m/s];
Shields et al PRA(10) [and two-particle interactions];
Friedman & Nowik PS(12) [tests under acceleration using Mössbauer spectroscopy];
Wang TPT(13)mar
[and actual appearance of clocks, with relativistic Doppler effect];
Botermann et al PRL(14)
+ news nat(14)sep [experiment];
news pw(17)jun [test];
Paige et al a1809 [for quantum clocks];
> s.a. gravitational redshift; special relativity.
Twin Paradox > s.a. mach's principle.
* Idea: Identical twins who
are separated, undergo different accelerations, and are then reunited will
have aged differently; Not really a paradox, it is a kinematical special
relativity effect due to differences in proper times.
@ General references: Rodrigues & Rosa FP(89),
comment Sachs FP(89);
Harpaz EJP(90);
Debs & Redhead AJP(96)apr [and simultaneity];
Ghosal et al FPL(05) [and equivalence principle],
gq/05;
Minguzzi AJP(05)sep [explicit formula];
Grøn EJP(06);
Kohler FPL(06) [instantaneous turnaround as limit];
Grandou & Rubin a0704/AJP [as a consequence of causality],
IJTP(09) [ingredients];
Székely SL(10)-a0807 [geometrical characterization];
Benguigui a1212;
Shuler JModP(14) [rev].
@ In curved spacetime: Dray AJP(90)sep,
Barrow & Levin PRA(01)gq [closed universe];
Bansar et al gq/05 [with a compact dimension];
Luminet a0910-ch;
Boblest et al EJP(11)-a1011 [de Sitter spacetime];
Sokołowski GRG(12)-a1203 [in Schwarzschild spacetime];
Sokołowski & Golda APPB(14)-a1404 [static spacetimes];
Gasperini MPLA(14);
Fung et al EJP(16)-a1606 [computational approach].
@ Variations: Price & Gruber AJP(96)aug;
Cranor et al AJP(00)nov,
Wortel et al AJP(07)dec-gq [circular];
Iorio FPL(05);
Abramowicz et al PRA(07) [on the photon sphere];
Field a0806;
Abramowicz & Bajtlik a0905 [version in which the accelerated twin is older];
Lévy-Leblond a1504 [two scenarios];
Ben-Ya'acov EJP-a1701 [relativistic rigid motion version];
Loriani et al a1905 [quantum version with interference of clocks].
Accelerated Observers
> s.a. acceleration; Jerk;
modified electrodynamics; special relativity [modified].
@ General references: Desloge & Philpott AJP(87)mar;
Desloge AJP(89)jul [spatial geometry];
Tartaglia & Ruggiero EJP(03)gq;
Mashhoon gq/03-in,
IJMPD(05)gq/03-in [non-locality];
Pardy gq/03;
Alba & Lusanna gq/03 [3+1 view];
Gourgoulhon 13;
Pepino & Mabile a1907 [pedagogical].
@ Rotation:
Herrera NCB(00)gq/99;
Bashkov & Malakhaltsev gq/00;
Rizzi & Ruggiero FP(02),
ed-03;
Klauber FP(07)gq/06;
Herrera mp/06 [and Thomas precession];
> s.a. reference frames [rotating, Ehrenfest paradox];
rotations; Sagnac Effect; time.
@ Related topics:
Gruber & Price AJP(97)oct [time dilation];
Chicone & Mashhoon CQG(04)gq
[critical speed c/√2].
Related Topics > s.a. classical particles [relativistic];
constants [speed of light]; physics teaching.
@ General references:
Christodoulou & O'Murchadha CMP(81) [boost problem in general relativity];
Coll & Morales IJTP(92) [frames];
Mermin AJP(97)jun,
AJP(98)dec [spacetime diagrams];
Pierceaux phy/04-conf [Poincaré's kinematics and light fronts];
Price AJP(05)may-gq [projectiles and pendula];
Dryzek et al AJP(06)jan
[lab experiment on E2
= p2c2
+ m2c4];
Salgado AJP(16)may-a1111 [visual calculations on rotated graph paper];
Dray AJP(13)aug [spacetime diagrams];
Mathews AJP(20)feb [seven formulations];
Kanda et al a2006-conf [logical analysis].
@ Misconceptions:
McGlynn & van Kampen EJP(08),
Franklin EJP(10),
comment Redžić SAJ(14)-a1005.
> Deformed kinematics: see
DSR; momentum space.
> Other topics: see clocks;
Gyrogroup; Pythagorean
Theorem; Rapidity; Rigid Body;
Superluminal Motion; tachyons.
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 30 jun 2020