Particles and Fields in Kerr Spacetimes  

Light Propagation and Null Geodesics > s.a. tests of general relativity with light.
@ Light propagation: Bozza PRD(08) [optical caustics]; Jacobson CQG(11)-a1107 [circular photon orbit and ISCO]; Farooqui et al a1306 [photon polarization]; Herrera-Aguilar & Nucamendi a1506 [parameters in terms of photon red/blueshifts]; > s.a. light deflection; gravitational lensing.
@ Null geodesics: Teo GRG(03) [closed]; Hod PLB(13)-a1210; Paganini et al a1611.

Massive Particles > s.a. Carter Constant; gravitomagnetism; types of geodesics.
* Geodesics: Bound geodesic orbits can be parametrized by three constants of the motion, the (specific) orbital energy, angular momentum and Carter constant.
* Overspinning: A near-extremal Kerr black hole can be spun up beyond its extremal limit byhaving it capture a test particle.
* Aschenbach effect: For Kerr black holes with a spin parameter a > 0.9953, the velocity has a positive radial gradient for geodesic, stable, circular orbits in a small radial range close to the black-hole horizon.
@ Timelike geodesics: Walker & Penrose CMP(70), Woodhouse CMP(75) [integrability]; Hughes PRD(01)gq [horizon-skimming]; Schmidt CQG(02)gq; Khanna PRD(04)gq/03 [elliptic/inclined orbits]; Chicone & Mashhoon A&A(05)ap/04 [ultrarelativistic], CQG(06)gq [tidal dynamics]; Boccaletti et al re GRG(05) [Beltrami's method]; Barausse et al PRD(07) [nearly horizon skimming]; Levin & Pérez-Giz PRD(08)-a0802 [classification]; Levin & Pérez-Giz PRD(09)-a0811, Pérez-Giz & Levin PRD(09)-0811 [homoclinic orbits]; Komorowski CQG(09) [elliptical last stable orbits]; Fujita & Hikida CQG(09)-a0906 [bound timelike geodesics, analytical]; Misra & Levin PRD(10) [eccentric]; Pugliese et al PRD(11)-a1105 [equatorial circular orbits]; Grossman et al PRD(12)-a1105 [harmonic structure]; DasGupta et al PRD(12)-a1202 [congruences]; Warburton et al PRD(13)-a1301 [isofrequency pairs]; Le Tiec CQG(14)-a1311 [relations among physical quantities for bound timelike geodesics]; Grib et al MPLA(14) [geodesics with negative energy]; Pugliese & Quevedo EPJC-a1409 [equatorial circular orbits in the ergoregion]; > s.a. modified kerr spacetimes.
@ Particle collisions: Harada & Kimura PRD(11)-a1102; Grib et al G&C(12)-a1203.
@ Scattering: Barrabès & Hogan PRD(04)gq [particles]; Barrabès et al CQG(05)gq [high-speed black hole, particles + waves].
@ Astrophysical aspects: Gammie ApJ(04)ap [magnetorotational instability]; > s.a. gravitating bodies [interior metrics]; matter near black holes.
@ Aschenbach effect: Aschenbach A&A(04); Stuchlik et al PRD(05)gq/04.
@ As particle accelerators: Bañados et al PRL(09)-a0909, comment Berti et al PRL(09)-a0911; Lake PRL(11)-a1001; > s.a. matter near black holes [energy extraction].
@ Spin-up / overspinning: Barausse et al PRL(10)-a1008 [self-force and the prevention of naked singularities]; Düztaş & Semiz PRD(13)-a1307 [on overspinning and naked singularities]; Colleoni et al a1508 [Kerr black hole overspinning and self-force].
@ Other particle effects: Hartle PRD(71) [no long-range neutrino forces]; Ottewill & Winstanley PLA(00) [quantum thermal state]; Bozza et al PLA(01)gq [maximal acceleration]; Sibgatullin AL(01)gq [orbit precession]; Gair et al PRD(11)-a1012 [integrating forced geodesic equations]; Ottewill & Taylor PRD(12)-a1205 [self-force for a static scalar charge, and closed form for the Green's function]; Will CQG(12)-a1208 [capture of non-relativistic particles]; Ranea & Vucetich a1307-proc [effect of magnetic fields on orbits].
> Related topics: see orbits of gravitating bodies and self-force [radiation reaction]; particle models; sources of gravitational waves.
> Online resources: see the GRorbits java program page.

Spinning Particles and Other Types > s.a. chaotic motion.
@ Spinning particles: Suzuki & Maeda PRD(98)gq/97; Hartl PRD(03)gq/02, PRD(03)gq [no chaos, fapp]; Garcia de Andrade gq/03 [Weyl neutrino solutions]; Bini et al CQG(04)gq [Mathisson-Papapetrou equations, clock effect]; Gorbatenko & Gorbatenko gq/06; Singh PRD(08)-a0808 [perturbation approach]; Bini & Geralico PRD(11)-a1408 [deviations from geodesic motion]; Plyatsko & Fenyk PRD(13)-a1303 [circular orbits]; Hackmann et al PRD(14)-a1408 [from extended test bodies]; Lukes-Gerakopoulos et al PRD(14)-a1409 [Hamiltonian]; Jefremov et al PRD-a1503 [ISCO]; Lukes-Gerakopoulos a1606-MG14 [integrability and chaos]; Lukes-Gerakopoulos et al a1707.
@ Spin precession: Bini et al PRD(16)-a1607 [gyroscope precession]; Akcay a1705 [self-force correction].
@ Other types and effects: de Felice et al CQG(04) [magnetized particles]; Bini & Geralico PRD(14)-a1311 [motion of quadrupolar bodies].

Fields > s.a. monopoles; wave equations.
* Kerr-cft correspondence: Proposed by Strominger in 2008; It is similar to the AdS/cft correspondence, but with more potential astrophysical applications.
@ General references: Finster et al BAMS(09)-a0801 [scalar + Dirac, rev]; Aretakis JFA(12)-a1110 [extreme]; Hod PRD(12)-a1211 [stationary scalar field distributions around an extremal Kerr black hole]; Brito et al PRD(13)-a1304 [massive spin-2 fields, and stability]; Zenginoğlu et al GRG(14)-a1208 [tails]; Andersson et al a1504-in; > s.a. electromagnetism; dirac and klein-gordon fields [including Green function, tails].
@ Kerr-cft correspondence: Guica et al PRD(09)-a0809 + Balasubramanian Phy(09); Chow et al PRD(09)-a0812 [in supergravity]; Azeyanagi et al PRD(09)-a0812 [and string theory]; Peng & Wu PLB(09)-a0901 [extremal, 5D Gödel spacetime]; Matsuo et al NPB(10)-a0907, RPP(10); Matsuo et al NPB(11)-a1007 [generic Kerr black holes]; Carlip JHEP(11)-a1101 [non-extremal black holes]; Bredberg et al NPPS(11)-a1103; Mei JHEP(12)-a1202 [in arbitrary dimensions]; Compère LRR(12)-a1203-ln [rev]; Ghezelbash & Siahaan PRD(14) [vector fields]; Zhang et al CQG(14)-a1311 [with electromagnetic field]; Ghosh PRD(14)-a1404 [first-order formalism]; Astorino PLB(15)-a1508 [magnetized].
> Quantum fields: see quantum field theory in curved spacetime.


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 24 jul 2017