Particles and Fields in Kerr Spacetimes  

Light Propagation and Null Geodesics > s.a. tests of general relativity with light.
@ Light propagation: Bozza PRD(08) [optical caustics]; Jacobson CQG(11)-a1107 [circular photon orbit and ISCO]; Farooqui et al a1306 [photon polarization]; Herrera-Aguilar & Nucamendi a1506 [parameters in terms of photon red/blueshifts]; > s.a. light deflection; gravitational lensing.
@ Null geodesics: Teo GRG(03) [closed]; Hod PLB(13)-a1210; Paganini et al a1611.

Massive Particles > s.a. Carter Constant; gravitomagnetism; types of geodesics.
* Geodesics: Bound geodesic orbits can be parametrized by three constants of the motion, the (specific) orbital energy, angular momentum and the Carter constant (found by Brandon Carter in 1968 and later found to be associated with the existence of a Killing tensor by Walker and Penrose).
* Overspinning: A near-extremal Kerr black hole can be spun up beyond its extremal limit by having it capture a test particle.
* Aschenbach effect: For Kerr black holes with a spin parameter a > 0.9953, the velocity has a positive radial gradient for geodesic, stable, circular orbits in a small radial range close to the black-hole horizon.
@ Timelike geodesics: Walker & Penrose CMP(70), Woodhouse CMP(75) [integrability]; Hughes PRD(01)gq [horizon-skimming]; Schmidt CQG(02)gq; Khanna PRD(04)gq/03 [elliptic/inclined orbits]; Chicone & Mashhoon A&A(05)ap/04 [ultrarelativistic], CQG(06)gq [tidal dynamics]; Boccaletti et al re GRG(05) [Beltrami's method]; Barausse et al PRD(07) [nearly horizon skimming]; Levin & Pérez-Giz PRD(08)-a0802 [classification]; Levin & Pérez-Giz PRD(09)-a0811, Pérez-Giz & Levin PRD(09)-0811 [homoclinic orbits]; Komorowski CQG(09) [elliptical last stable orbits]; Fujita & Hikida CQG(09)-a0906 [bound timelike geodesics, analytical]; Misra & Levin PRD(10) [eccentric]; Pugliese et al PRD(11)-a1105 [equatorial circular orbits]; Grossman et al PRD(12)-a1105 [harmonic structure]; DasGupta et al PRD(12)-a1202 [congruences]; Warburton et al PRD(13)-a1301 [isofrequency pairs]; Le Tiec CQG(14)-a1311 [relations among physical quantities for bound timelike geodesics]; Grib et al MPLA(14) [geodesics with negative energy]; Pugliese & Quevedo EPJC-a1409 [equatorial circular orbits in the ergoregion]; > s.a. modified kerr spacetimes.
@ Particle collisions: Harada & Kimura PRD(11)-a1102; Grib et al G&C(12)-a1203.
@ Scattering: Barrabès & Hogan PRD(04)gq [particles]; Barrabès et al CQG(05)gq [high-speed black hole, particles + waves].
@ Astrophysical aspects: Gammie ApJ(04)ap [magnetorotational instability]; > s.a. gravitating bodies [interior metrics]; matter near black holes.
@ Aschenbach effect: Aschenbach A&A(04); Stuchlik et al PRD(05)gq/04.
@ As particle accelerators: Bañados et al PRL(09)-a0909, comment Berti et al PRL(09)-a0911; Lake PRL(11)-a1001; > s.a. matter near black holes [energy extraction].
@ Spin-up / overspinning: Barausse et al PRL(10)-a1008 [self-force and the prevention of naked singularities]; Düztaş & Semiz PRD(13)-a1307 [on overspinning and naked singularities]; Colleoni et al a1508 [Kerr black hole overspinning and self-force].
@ Other particle effects: Hartle PRD(71) [no long-range neutrino forces]; Ottewill & Winstanley PLA(00) [quantum thermal state]; Bozza et al PLA(01)gq [maximal acceleration]; Sibgatullin AL(01)gq [orbit precession]; Gair et al PRD(11)-a1012 [integrating forced geodesic equations]; Ottewill & Taylor PRD(12)-a1205 [self-force for a static scalar charge, and closed form for the Green's function]; Will CQG(12)-a1208 [capture of non-relativistic particles]; Ranea-Sandoval & Vucetich proc(14)-a1307 [effect of magnetic fields on orbits].
> Related topics: see orbits of gravitating bodies and self-force [radiation reaction]; particle models; sources of gravitational waves.
> Online resources: see the GRorbits java program page.

Spinning Particles and Other Types > s.a. chaotic motion.
@ Spinning particles: Suzuki & Maeda PRD(98)gq/97; Hartl PRD(03)gq/02, PRD(03)gq [no chaos, fapp]; Garcia de Andrade gq/03 [Weyl neutrino solutions]; Bini et al CQG(04)gq [Mathisson-Papapetrou equations, clock effect]; Gorbatenko & Gorbatenko gq/06; Singh PRD(08)-a0808 [perturbation approach]; Bini & Geralico PRD(11)-a1408 [deviations from geodesic motion]; Plyatsko & Fenyk PRD(13)-a1303 [circular orbits]; Hackmann et al PRD(14)-a1408 [from extended test bodies]; Lukes-Gerakopoulos et al PRD(14)-a1409 [Hamiltonian]; Jefremov et al PRD-a1503 [ISCO]; Lukes-Gerakopoulos a1606-MG14, et al PRD(17)-a1707.
@ Spin precession: Bini et al PRD(16)-a1607 [gyroscope precession]; Akcay PRD(17)-a1705 [self-force correction].
@ Other types and effects: de Felice et al CQG(04) [magnetized particles]; Bini & Geralico PRD(14)-a1311 [motion of quadrupolar bodies].

Fields > s.a. maxwell fields in curved spacetime; monopoles; wave equations.
* Kerr-cft correspondence: Proposed by Strominger in 2008; It is similar to the AdS/cft correspondence, but with more potential astrophysical applications.
@ General references: Finster et al BAMS(09)-a0801 [scalar + Dirac, rev]; Aretakis JFA(12)-a1110 [extreme]; Hod PRD(12)-a1211 [stationary scalar field distributions around an extremal Kerr black hole]; Brito et al PRD(13)-a1304 [massive spin-2 fields, and stability]; Zenginoğlu et al GRG(14)-a1208 [tails]; Andersson et al a1504-in; > s.a. electromagnetism; dirac and klein-gordon fields [including Green function, tails].
@ Kerr-cft correspondence: Guica et al PRD(09)-a0809 + Balasubramanian Phy(09); Chow et al PRD(09)-a0812 [in supergravity]; Azeyanagi et al PRD(09)-a0812 [and string theory]; Peng & Wu PLB(09)-a0901 [extremal, 5D Gödel spacetime]; Matsuo et al NPB(10)-a0907, RPP(10); Matsuo et al NPB(11)-a1007 [generic Kerr black holes]; Carlip JHEP(11)-a1101 [non-extremal black holes]; Bredberg et al NPPS(11)-a1103; Mei JHEP(12)-a1202 [in arbitrary dimensions]; Compère LRR(12)-a1203-ln [rev]; Ghezelbash & Siahaan PRD(14) [vector fields]; Zhang et al CQG(14)-a1311 [with electromagnetic field]; Ghosh PRD(14)-a1404 [first-order formalism]; Astorino PLB(15)-a1508 [magnetized]; Compère LRR(17).
> Quantum fields: see quantum field theory in curved spacetime.


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 26 jul 2018