Gravitational Radiation Reaction and Self-Force  

In General > s.a. radiation reaction in general.
* Results: A point particle perturbs the spacetime metric, and affects its own motion; In the zero mass limit it moves along a geodesic, but to first order in m it accelerates, and there are two effects, a time-dependent inertial mass and a deviation from geodesic motion (like geodesic motion for a modified metric); The infinite self-field can be unambiguously decomposed into a singular piece that exerts no force, and a smooth remainder that is responsible for the acceleration.
* Approaches: Barack/Burko/Ori's mode-sum regularization prescription (MSRP).
* Motivation: 2014, Calculating the gravitational self-force is the best approach available to model the gravitational waves emitted by binary systems with extreme-mass ratios.
@ Reviews: Poisson LRR(04)gq/03 [from scratch]; Detweiler CQG(05)gq; Wald a0907-proc [intro]; Poisson et al LRR(11)-a1102; Pound a1506-ch.
@ General references: DeWitt & Brehme AP(60); Kennefick gq/97 [history]; Quinn & Wald PRD(97)gq/96 [axiomatic]; Blanchet & Faye JMP(01)gq/00; Quinn PRD(00)gq [and scalar field]; Detweiler PRL(01)gq/00; Poisson CQG(04), gq/04-GR17; Spallicci ch(10)-a1005-ln [and free fall, historical]; Bini & Damour PRD(12)-a1210 [general orbits, effective one-body formalism].
@ The singular field: Messaritaki PRD(07)gq; Harte a1002-MG12 [effect on a body's multipole moments]; Heffernan a1403-PhD [local behavior].
@ The gauge issue: Barack & Ori PRD(01)gq [gauge-independent]; Gralla PRD(11)-a1104 [and averaging]; Cañizares & Sopuerta a1406 [new approach].
@ Approaches: Barack & Ori PRD(00)gq/99, Burko AIP(00)gq/99 [MSRP]; Detweiler & Whiting PRD(03)gq/02 [decomposition]; Ori & Rosenthal PRD(03)gq/02, JMP(04)gq/03 [extended object approach]; Anderson et al PRD(05)gq/04 [quasi-local terms]; Anderson & Wiseman CQG(05)gq [matched expansion]; Pound et al PRD(05)gq [limitations of adiabatic approximation]; Gal'tsov et al in(06)gq/07 [local method]; Gralla & Wald CQG(08)-a0806, a0907-proc [rigorous derivation]; Harte CQG(08)-a0807 [from generalized Killing fields]; Pound PRD(10)-a0907; Wardell PhD(09)-a0910 [method of matched expansions]; Dolan & Barack PRD(11)-a1010 [m-mode regularization, and Schwarzschild spacetime]; Pound PRD(12)-a1206 [non-linear, field outside a small body]; Birnholtz et al PRD(13)-a1305; Wardell et al PRD(14)-a1401 [via Green functions and worldline integration]; Birnholtz & Hadar PRD(15)-a1501 [in arbitrary dimensions]; Wardell in(15)-a1506 [computational strategies].
@ Second-order: Rosenthal PRD(06)gq; Gralla PRD(12)-a1203 [first-principles derivation]; Detweiler PRD(12); Pound PRL(12)-a1201.
@ Numerical calculation: Vega et al PRD(09)-a0908 [(3+1) code], CQG(11)-a1101; Merlin & Shah PRD(15)-a1410 [from reconstructed metric perturbations].
@ Other situations / theories: Zimmerman & Poisson PRD(14)-a1406, Zimmerman PRD(15)-a1505 [non-vacuum spacetimes]; Linz et al PRD(14)-a1406 [charged particles in electrovac spacetimes]; Zimmerman PRD(15)-a1507 [scalar-tensor gravity].
@ Related topics: Quinn & Wald PRD(99)gq [energy conservation]; Whiting & Detweiler IJMPD(03) [and the equivalence principle]; Linz et al PRD(14)-a1404 [on an accelerated particle]; Maia et al a1705, a1705 [apinning bodies].

In Specific Spacetimes > s.a. black-hole binaries; black-hole phenomenology.
@ Schwarzschild, static particle: Burko CQG(00)gq/99; Wiseman PRD(00)gq; Rosenthal PRD(04)gq [massive field approach].
@ Schwarzschild, particle plunging radially: Barack PRD(00)gq; Barack & Burko PRD(00)gq; Barack & Loustó PRD(02)gq; Anderson et al PRD(06)gq/05 [Hadamard-WKB expansion].
@ Schwarzschild, circular orbits: Burko PRL(00)gq; Nakano et al PTP(01)gq; Detweiler et al PRD(03)gq/02 [with scalar charge]; Detweiler & Poisson PRD(04)gq/03 [l = 0, 1 multipoles]; Hikida et al PTP(05)gq/04 [regularization]; Barack & Sago PRD(07)gq; Detweiler PRD(08)-a0804; Barack & Sago PRL(09)-a0902 [innermost circular orbit]; Blanchet et al PRD(10)-a0910; Blanchet et al PRD(10)-a1002 [high-order post-Newtonian fit]; Shah et al PRD(11)-a1009 [conservative part of the self-force].
@ Schwarzschild, other situations: Nakano & Sasaki PTP(01)gq/00; Barack PRD(01)gq [mode sum regularization], et al PRL(02)gq/01; Mino et al PTP(02)gq/01; Barack & Ori PRD(02)gq [regularization parameters]; Burko PRD(03); Sago et al PRD(03)gq/02, Nakano et al PRD(03) [gauge problem]; Messaritaki PhD(03)gq; Anderson & Hu PRD(04)gq/03 [particle + scalar field]; Rosenthal PRD(04) [massive field approach]; Hikida et al CQG(05)gq/04 [regularization]; Sago et al PRD(08)-a0811 [comparing two approaches]; Damour PRD(09)-a0910 [effective one-body formalism]; Barack & Sago PRD(10)-a1002, PRD(11)-a1101 [eccentric orbit]; Keidl et al PRD(10)-a1004 [in a radiation gauge]; Barack et al PRD(10) [precession effect]; Akcay PRD(11)-a1012, Akcay et al PRD(12); Vega et al PRD(13)-a1307 [eccentric orbits]; Vines & Flanagan PRD(15)-a1503 [motion under the conservative self-force]; Bini et al PRD(16)-a1601 [new analytical results].
@ Schwarzschild, charged particle: Hikida et al PTP(04)gq/03, Haas & Poisson PRD(06)gq [with scalar charge]; Cañizares & Sopuerta PRD(09)-a0903 [circular orbit]; Kim a1001; Cañizares et al PRD(10)-a1006 [pseudospectral collocation methods].
@ Kerr: Kennefick & Ori PRD(96)gq/95, Kennefick PRD(98)gq [circular orbits]; Barack & Ori PRL(03); Sago et al PTP(05)gq [evolution of E, L, Q]; Barack et al PRD(07)-a0709, Dolan et al PRD(11)-a1107 [m-mode regularization]; Barack CQG(09)-a0908 [extreme mass ratio]; Warburton & Barack PRD(10)-a1003, PRD(11)-a1103; Isoyama et al PRL(14)-a1404 [innermost stable circular equatorial orbit]; Warburton PRD(15)-a1408 [scalar charge]; Sago & Fujita PTEP(15)-a1505 [radiation reaction effect on orbital parameters]; van de Meent PRD(16)-a1606 [eccentric equatorial orbits]; Akcay a1705 [correction to geodetic spin precession]; > s.a. particles in kerr spacetimes.
@ Other isolated objects: Burko et al PRD(01)gq/00 [spherical shell]; Burko & Liu PRD(01)gq [axisymmetric black hole]; Shankar & Whiting PRD(07)-a0707 [charge near spherical conducting star]; Drivas & Gralla CQG(11)-a1009 [dependence on central object]; Yen et al JCP(12)-a1210, Wang et al ApJS(15)-a1509 [infinitesimally thin disk].
@ Wormholes: Khusnutdinov & Bakhmatov PRD(07)-a0707; Bezerra & Khusnutdinov PRD(09)-a0901; Khusnutdinov et al CQG(10).
@ Cosmological spacetimes: Burko et al PRD(02); Haas & Poisson CQG(05)gq/04.

Applications > s.a. dynamics of gravitating bodies; motion of gravitating objects; Post-Newtonian Formalism.
@ References: Isoyama & Poisson CQG(12)-a1205 [as probe of internal structure of a massive body].


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 24 jun 2017