|  States and Systems in Non-Equilibrium Statistical Mechanics | 
In General
  > s.a. non-equilibrium statistical mechanics; generalized
  thermodynamics [relativistic]; statistical mechanical systems.
  * KLS model: (Katz-Lebowitz-Spohn)
    A modified Ising lattice gas that has become an important example of non-equilibrium system.
  @ States: González & Téllez JPA(09) [organized-disorganized state crossover];
    Cramer & Eisert NJP(10)-a0911 [relaxation to Gaussian states].
  @ Systems, in general: Bustamante et al PT(05)jul [small systems];
    Jou et al 10 [flowing fluids];
    Hubeny & Rangamani AHEP(10)-a1006 [strongly-coupled field theories, holographic methods];
    Gujrati PRE(12)-a1101 [inhomogeneous systems];
    Schlein a1210-proc [systems of interacting bosons];
    Levin et al PRP(14)-a1310 [with long-range interactions];
    Brunelli et al NJP(15)-a1412 [cavity optomechanical device];
    Viermann et al PRE(15)-a1411 [statistical field theory for classical particles];
    Dymov AHP(16)-a1501 [weakly stochastically perturbed system of oscillators];
    Martiniani et al PRX(19) [quantifying hidden order].
  @ Active matter: 
      Fodor et al PRL(16) [thermal equilibrium tools];
      Junot et al PRL(17) [no well-defined pressure].
  @ Systems, classical: Buča et al a2103 [exactly solvable model, the classical Rule 54].
  @ Systems, quantum: de Almeida PhyA(08)-a0806;
    Polkovnikov et al RMP(11)-a1007;
    Yukalov PLA(11) [isolated].
  > Other systems:
    see classical systems [many-body]; composite quantum systems;
    types of field theories [thermal]; states in quantum field theory.
Steady States
  * Idea: States in
    which there are non-zero flows, but they are time-independent.
  @ General references:
    Penrose & Coveney PRS(94),
    Evans & Coveney PRS(95) ["canonical" non-equilibrium ensemble];
    Rey-Bellet & Thomas CMP(02) [convergence to equilibrium];
    Dewar JPA(03) [properties, and information theory];
    Eckmann mp/03-proc;
    Sasa & Tasaki JSP(06);
    Zia & Schmittmann JPA(06) [classification];
    Blythe PRL(08) [reversibility and heat dissipation];
    Moldoveanu et al PRB(11)-a1104 [results];
    Zhang et al PRP(12) [stochastic theory];
    Altaner et al PRE(12)-a1105 [network representations];
    Ness PRB(14)-a1312 [universality and approximation];
    Komatsu et al JSP(15)-a1405 [exact equalities and thermodynamic relations];
    Ghosh et al a2002 [geometric formalism].
  @ Effective equilibrium description:
    Barré et al PRL(02);
    Dutt et al AP(11).
  @ Fluctuations: Derrida JSM(07)-ln [fluctuations in density and current];
    Maes & van Wieren PRL(06) [time-symmetric];
    Taniguchi & Cohen JSP(07) [Onsager-Machlup theory, fluctuation theorems];
    Abou Salem mp/07 [fluctuations of macroscopic observables];
    Taniguchi & Cohen JSP(08) [extended Onsager-Machlup theory, thermodynamics and fluctuations];
    Sewell RPMP(12)-a1206 [macrostatistical treatment];
    Bernard & Doyon JPA(13)-a1306 [time-reversal symmetry and fluctuation relations].
  @ Relaxation processes:
    Kemper et al PRX(18) [theory].
  @ Examples: Piasecki & Soto PhyA(06) [and approach];
    Mazilu & Williams AJP(09)may [two-temperature linear spin model];
    Maes & Netocny JMP(10)-a0911 [McLennan ensembles];
    Öttinger JSP(10) [two approaches to averages and fluctuations];
    Hurtado et al JSP(14) [currents in non-equilibrium diffusive systems];
    Wang JSM(17)-a1607 [in quantum chaotic systems].
Applications and Phenomena
  @ References: Haldar et al AP(17)-a1710 [FLRW cosmological models].
  > Examples of phenomena:
    see dissipation; Nyquist Theorem;
    Relaxation; Self-Organization;
    superconductivity; Transport;
    turbulence.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 30 mar 2021