|  Non-Equilibrium Statistical Mechanics and Thermodynamics | 
In General
  > s.a. quantum statistical mechanics; statistical mechanics
  [approach to equilibrium] / states and systems.
  * Idea: The study of
    properties of non-equilibrium states (find special states equivalent to
    canonical ensembles for equilibrium statistical mechanics; Characterize
    them in terms of order/chaos, at various scales and near/far from
    equilibrium), and understand their dynamics (near-equilibrium transport
    phenomena, the arrow of time, for which we need an irreversible,
    non-unitary evolution for ρ), and estimate the fluctuations.
  * History: XIX century,
    Lord Kelvin; 1931, L Onsager proposed regression equations for
    evolution of macroscopic variables, in terms of thermodynamic forces;
    1953, Onsager & Machlup added white noise; More recently computer
    simulations have been carried out, e.g., using cellular automata (G
    Jona-Lasinio, C Laudin & M-E Vares).
  * Issue: Many results
    on non-equilibrium systems have been derived using arguments in which
    microscopic fluctuations are not reliably treated, for lack of a good
    statistical theory even in the steady-state case; For example, Fourier's
    law that describes heat transfer in a normal wire fails at the nanoscale.
  * Features: Far from
    equilibrium a system can develop spontaneous ordered structures with
    specific patterns (but there is no extremum principle to tell us which);
    This led us not to believe anymore in the "thermal death" of the universe.
  * Tools: Intensive
    thermodynamic parameters can be associated to additive conserved
    quantities (such as mass, volume, ...) using a statistical approach in
    far-from-equilibrium steady-state systems, under few assumptions and
    without a detailed balance requirement; In lattice systems dynamics can
    be studied using numerical techniques such as matrix-product-state-based
    methods, for continuum systems Hamiltonian truncation methods can be applied.
  @ Books: de Groot & Mazur 62;
    Balescu 75,
    97;
    Lavenda 85;
    Keizer 87;
    Brenig 89;
    Gaspard 98;
    Eu 98;
    Zwanzig 01;
    Chen 03 [without the assumption of molecular chaos];
    Le Bellac et al 04;
    Ebeling & Sokolov 05;
    Öttinger 05;
    Mazenko 07;
    Evans & Morriss 07 [liquids];
    Balakrishnan 08 [II/III];
    Lebon et al 08;
    Ódor 08; Streater 09 [stochastic approach];
    Pottier 09
      [and linear irreversible processes, r JSP(11)];
    Krapivsky et al 10
      [r JSP(11)];
    Kamenev 11
      [field-theoretical methods, r PT(12)nov];
    Attard 12;
    Wio et al 12;
    Gallavotti 14-a1311 [and chaos, irreversibility];
    Livi & Politi 17.
  @ Overviews:
    Ruelle PhyA(99);
    Gorban & Karlin cm/03 [geometrical];
    Ruelle PT(04)may;
    Pokrovski EJP(05);
    Abou Salem mp/06 [quantum, and thermodyamics];
    Gaspard PhyA(06);
    Maes et al LNM(09)-mp/07;
    Zia JSP(10) [and KLS model];
    Jaksic et al JMP(14)#7;
    Ribeiro et al AJP(16)dec-a1601 [small quantum systems, pedagogical introduction].
Frameworks, Tools
  > s.a. computational physics.
  @ General references:
    Schlögl PRP(80) [stochastic measures];
    Gaveau & Schulman PLA(97) [master equation];
    Nieuwenhuizen cm/01-MG9;
    Ghosh et al AJP(06)feb [dynamical framework];
    Bertin et al PRL(06) [intensive parameters];
    Astumian AJP(06)aug [use of equilibrium theory];
    Hernández-Lemus & EJTP(08)-a0908 [and theory of stochastic processes];
    Sadhukhan & Bhattacharjee JPA(10);
    Bertini et al JSP(12) [work and thermodynamic transformations];
    Kleeman JSP(15)-a1307 [path-integral formalism];
    Etkin a1404 [from thermokinetics to thermostatics];
    Brandão et al PRL(13) [resource theory];
    Duong a1412;
    Gay-Balmaz & Yoshimura a1510 [Lagrangian formalism];
    Pavelka et al PhyD(16)-a1512 [Poisson brackets];
    Gay-Balmaz & Yoshimura JMP(18)-a1704 [Dirac structures],
    Ent(19)-a1904 [variational formulation, rev],
    a1904 [variational to bracket formulations];
    Aibara et al PTEP(19)-a1807 [gravity analog model].
  @ Specific techniques: Qiao a0709/PhyA [based on subdynamics];
    Bertini et al JSP(09)
      [macroscopic description of driven diffusive systems];
    Parmeggiani Phy(12) [new methods];
    Deffner & Lutz PRE(13)-a1212 [far from equilibrium, Bures angle and thermodynamic length];
    Rakovszky et al NPB(16)-a1607 [Hamiltonian truncation approach];
    te Vrugt & Wittkowski a2001 [Mori-Zwanzig projection operator formalism];
    Camsari et al a2008 [Non-Equilibrium Green Function method].
  > Related topics: see Effective
    Field Theory; generalized thermodynamics [irreversible];
    MaxEnt; stochastic quantization.
Concepts and Phenomena
  > s.a. arrow of time; Heat Flow;
  information; Master Equation;
  states and systems; Transport Phenomena.
  * Laws and constraints:
    There are constraints on the evolution of non-equilibrium systems, that
    form a new family of second laws.
  * Phase
    transitions: Non-equilibrium phase transitions are situations
    in which system properties related to non-equilibrium phenomena, such as
    transport phenomena, undergo sudden changes with the system's parameters;
    > s.a. critical phenomena;
    quantum phase transitions [dynamical quasicondensation].
  * Entropy production:
    Prigogine suggested that there are two universal behaviors, (i) the entropy
    production rate decreases when a system approaches a steady state, and (ii)
    the entropy production rate reaches its minimal value at the steady state.
  @ Chaos: Dorfman 99;
    Klages 07 [transport and fractal techniques];
    > s.a. quantum chaos.
  @ Entropy:
    Holian PRA(86);
    Kandrup JMP(87);
    Martyushev et al JPA(07),
    Maes & Netocny JMP(07) [minimum entropy production];
    Maes PS(12);
    Lieb & Yngvason PRS(13)-a1305;
    Wittkowski et al JPA(13) [microscopic approach to entropy production];
    Beretta a1312-conf [steepest entropy ascent paths towards the MaxEnt distribution];
    Kadanoff a1403 [kinetic entropy, etc];
    Brunelli et al a1602 [entropy production in mesoscopic quantum systems];
    Camati et al PRL(16) [control by Maxwell's demon];
    Šafránek et al a1905 [dynamical coarse-grained entropy];
    Dowling et al a2008
      [relativistic fluids, second law and relative entropy].
  @ Fluctuations:
    van Zon & Cohen PhyA(04);
    Lucarini JSP(08)-a0710 [response to perturbations, causality];
    Criado-Sancho et al PLA(09) [flux fluctuation theorem and non-equilibrium thermodynamic potential];
    Chetrite & Gawedzki JSP(09)
      [diffusion, Eulerian and Lagrangian pictures, and fluctuation-dissipation relations];
    Boksenbojm et al PhyA(10) [work relations and the second law];
    Altaner a1210 [Stochastic Thermodynamics approach];
    Pagel et al NJP(13)-a1310 [fluctuation relations for harmonic oscillators];
    Funo et al PRE(16)-a1609 [small systems, work fluctuation and total entropy production].
  @ Related topics: Frieden et al PLA(02) [and Fisher information];
    Merkli CMP(01)mp/04 [positive commutators, return to equilibrium];
    Carati PhyA(05) [entropies from time averages];
    Chiocchetta et al PRB(16)-a1606 [short-time universal exponents, functional renormalization-group approach];
    Brandão et al PNAS-a1305 [second laws;
      s.a. in Bernamonti et al a1803];
    > s.a. Detailed Balance; ergodic theory;
      fokker-planck equation; Multiscale Physics;
      temperature.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 8 aug 2020