|  Types of Spinors | 
In General, Main Types  > s.a. 2-spinors;
  4-spinors [Majorana and Dirac spinors]; spin structure.
  @ General references: Sommers JMP(80) [spatial];
    Yip JMP(83) [2D];
    Trautman ln(87) [Dirac and Chevalley];
    Goncharov IJMPA(94) [real];
    van Nieuwenhuizen & Waldron PLB(96) [Euclidean];
    Hamilton JMP(97) [hypercomplex numbers];
    Faber FBS(01)ht/99 [topological fermions];
    Friedman & Russo FP(01) [geometry, Jordan triples and spin factors];
    Rodrigues JMP(04)mp/02 [Dirac-Hestenes spinors];
    Pal AJP(11)may-a1006 [Dirac, Majorana, and Weyl fermion fields, pedagogical];
    Budinich AACA(15)-a1405 [spinors of zero nullity];
    Fredsted a1811
      [coupled to gravity, using only world indices].
  @ Lounesto algebraic classification: 
    da Silva & da Rocha PLB(13)-a1212;
    Arcodía et al EPJC(19)-a1902 [and Heisenberg spinors];
    Coronado et al a1909;
    Bueno EPJC(19)-a1911.
  @ Other classification: Miralles & Pozo JMP(06) [unified description of different types];
    Bonora et al JHEP(15)-a1411 [in arbitrary dimensions and signatures];
    Bonora et al EPJC(18)-a1711 [and second quantization];
    Coronado et al a1906 [beyond Lounesto].
  @ Irreducible representations: Varlamov a1412 [modulo-8 periodicity];
    Curtright et al PLA(16)-a1607 [multiplicities in Kronecker products];
    Polychronakos & Sfetsos NPB(16)-a1609 [decomposition of arbitrary products into irreducible SU(2) representations];
    Hoff da Silva et al EPJC(17)-a1702.
  @ Covariant derivative: Popławski a0710;
      Shapiro a1611.
  @ Hamiltonian dynamics: Kaur et al PLA(14) [mechanical analogues];
    McLachlan et al MoC(16)-a1402 [discrete time];
    > s.a. dirac fields; coupled spin models.
  @ Semiclassical description:
    Bulgac & Kusnezov AP(99);
    Deriglazov AP(12)-a1107,
    Deriglazov & Pupasov-Maksimov Sigma(14)-a1311 [without Grassmann variables].
  > And physical theories:
    see dirac fields; coupled-spin
    models; magnetism; quantum
    particles [relativistic]; spinors in field theory.
ELKO Spinors
  * Idea: "Eigenspinoren des
    Ladungskonjugationsoperators", or dual-helicity eigenspinors of the charge
    conjugation operator; Spin-1/2 fermions with mass dimension 1 proposed in
    2005 by Ahluwalia and Grumiller, and suggested as a dark matter candidate.
  @ General references:
    da Rocha & Rodrigues MPLA(06)mp/05 [and Lounesto classification];
    Böhmer AdP(06)gq [and Einstein-Cartan theory],
    AdP(07)gq [in curved spacetime, coupled Einstein-ELKO fields];
    da Rocha & Hoff da Silva JMP(07)-a0711,
    IJMPA(09)-a0903 [and Dirac spinors],
    IJGMP(09)-a0901 [and gravity];
    Fabbri MPLA(10)-a0911,
    MPLA(10)-a0911 [causal propagation];
    Lee a1011 [in 1+1 dimensions];
    Fabbri PLB(11)-a1101 [most general dynamical theory];
    Lee PhD(12)-a1306 [symmetries];
    Hoff da Silva & Pereira JCAP(14)-a1401 [in spatially flat FLRW spacetimes];
    Fabbri & Vignolo IJMPD(14)-a1407 [and torsion];
    Ahluwalia & Nayak IJMPD(14)-a1502 [causality and Fermi statistics];
    Bueno et al a1706-wd [alternative approach];
    Ahluwalia & Sarmah EPL(19)-a1810 [spatial rotations];
    Nieto MPLA(19)-a1907 [generalized Elko theory];
    Ahluwalia EPJST-a2103 [rev];
    > s.a. Conformal Gravity;
      Wikipedia page.
  @ As dark matter:
    Ahluwalia et al PLB(10);
    Dias et al PLB(12)-a1012 [and the LHC];
    Gillard a1109,
    RPMP(12).
  @ Other cosmology: Wei PLB(11)-a1002 [as dark-energy candidate];
    Basak et al JCAP(13)-a1212 [inflationary attractor behavior];
    de Oliveira & Rodrigues PRD(12)-a1210 [preferred axis];
    Kouwn et al MPLA(13) [with torsion];
    Pereira et al JCAP(14)-a1402 [attractor behavior];
    Pereira & Guimarães JCAP(17)-a1702.
  @ Other phenomenology: Boehmer & Burnett a1001-MG12 [dark spinors].
Other Types and Related Topics
  > s.a. poincaré group [representations, including continuous spin].
  * Kähler spinors:
    Polynomials of differential forms.
  @ Kähler spinors:
    Becher & Joos ZPC(82) [lattice];
    Bullinaria AP(86);
    Jourjine PRD(87) [quantization];
    Shimono PTP(90) [and lattice gravity];
    Mankoč Borštnik & Nielsen ht/99-conf,
    PRD(00)ht/99,
    ht/00;
    Jourjine a0805-wd;
    Kruglov EPJC(10)-a0911
      [massless, Belinfante energy-momentum tensors and canonical quantization];
    Jourjine PLB(10)-a1005 [and chiral fermion mass terms].
  @ Quaternionic:
    Dray & Manogue ht/99-proc;
    Carrion et al JHEP(03)ht,
    Toppan AIP(05)ht [and octonionic];
    Fredsted JMP(09)-a0811 [in curved spacetime].
  @ Other, and generalized spinors:
    Ogievetsky & Polubarinov JETP(65);
    Avis & Isham CMP(80)
      [with internal symmetry group G/\(\mathbb Z\)2];
    Trautman & Trautman JGP(94);
    Batista JGP(14)-a1310 [pure subspaces];
    Vassilevich JMP(15)-a1508 [symplectic spinors, spectral geometry];
    Pitts a1509-proc [and Ockham's razor];
    Monakhov PPN(17)-a1604 [algebraic spinors, vacuum, creation and annihilation operators];
    Coronado et al EPJC(19)-a1812 [type-4 spinors].
  @ Other phenomenology: Vager & Vager PLA(12) [spin order without magnetism];
    Beghetto et al AACA(18)-a1810 [and black-hole physics];
    > s.a. coupled-spin models; magnetism.
  > Other topics:
    see Covariance; deformation quantization;
    inertia; lie derivatives;
    Pin Group.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 2 apr 2021