|  Orthogonal and Unitary Lie Groups and Lie Algebras | 
Orthogonal Groups > s.a. examples of lie groups [relationships];
  fundamental groups; grand unified theories [SO(10)].
  * O(n): The group of invertible linear
    operators on the n-dimensional real vector space which preserve the Euclidean form;
    In an orthonormal basis for the vector space, they are given by orthogonal matrices M,
    satisfying M–1  = MT; The dimension of the group
    is n (n−1)/2.
  * SO(n): The subgroup of O(n)
    of SO(n) of orthogonal matrices with unit determinant; Its dimension is n
    (n−1)/2 (it is the component of SO(n) connected to the identity).
  * SO(3): ≅ \(\mathbb R\)P3,
    locally the same as SU(2), simple; > s.a. rotations.
  * SO(4): Isomorphic to
    (SU(2) × SU(2))/\(\mathbb Z\)2
    [@ see Thurston 97 for details];
    Topologically, SO(4) = (S3 ×
    S3)/{(1,1), (−1,−1)}, where {(1,1), (−1,−1)}
    = ker(h), with h: S3 ×
    S3 → SO(4) is the surjective homorphism
    given by h(p,q)(x):=
    p−1xq,
    in which x ∈ \(\mathbb R\)4,
    we have identified p, q ∈ S3 with
    unit quaternions, and multiplication is quaternion multiplication; Also homeomorphic
    to SO(3) × SU(2) = P3 × S3,
    but this cannot be made into a Lie group equivalence.
  @ General references: Zhang a1509 [volumes];
    Diaconis & Forrester a1512 [measure, history].
  @ O(n): Gorin JMP(02)mp/01,
    Braun JPA(06)mp [integrals, > s.a. lie groups].
  @ SO(3):
    Mebius math/07 [derivation of the Euler-Rodrigues formula];
    Mukunda et al a0904 [Hamilton's theory of turns];
    > s.a. SU(2).
  @ SO(4): Mebius www(01),
    math/05 [quaternion representation theorem];
    > s.a. Wikipedia page. 
  @ SO(n): Alisauskas JPA(02)mp [3j symbols],
    JPA(02) [6j symbols];
    Jiang & Soudry AM(03) [local converse theorem for SO(2n+1)].
  > Online resources:
    see Wikipedia page. 
Pseudo-Orthogonal Groups
  > s.a. lorentz group [SO(3,1)]; de sitter group
  [SO(4,1)] / fundamental groups; Racah Coefficients.
  * SO(p, q):
    Non-compact; SO(2,1) = SL(2,\(\mathbb R\))/\(\mathbb Z\)2;
    SO(3,1) is simple; SO(2,2) = SL(2,\(\mathbb R\)) × SL(2,\(\mathbb R\)).
  * SO(3,1) Lie algebra: The generators are
    the rotations Si and boosts
    Ki ,
    \[\matrix{
    S_1 = \left(\matrix{0&0&0&0\cr 0&0&0&0\cr 0&0&0&-1\cr 0&0&1&0}\right)
    &S_2 = \left(\matrix{0&0&0&0\cr 0&0&0&1\cr 0&0&0&0\cr 0&-1&0&0}\right)
    &S_3 = \left(\matrix{0&0&0&0\cr 0&0&-1&0\cr 0&1&0&0\cr 0&0&0&0}\right)\cr
    K_1 = \left(\matrix{0&1&0&0\cr 1&0&0&0\cr 0&0&0&0\cr 0&0&0&0}\right)
    &K_2 =
    \left(\matrix{0&0&1&0\cr 0&0&0&0\cr 1&0&0&0\cr 0&0&0&0}\right)
    &K_3 = \left(\matrix{0&0&0&1\cr 0&0&0&0\cr 0&0&0&0\cr 1&0&0&0}\right) \;,
    } \]
    satisfying [Si,
    Sj]
    = εijk
    Sk ,
    [Si,
    Kj]
    = εijk
    Kk ,
    and [Ki,
    Kj]
    = −εijk
    Sk .
  * SO(2,1) Lie algebra:
    The generators are T0,
    T1
    and T2, with commutators
    [Ti,
    Tj]
    = fijk
    Tk
    = εijk
    gkl
    Tl, where
    ε012 = 1, and
    gij = diag(−1,1,1)
    = \(1\over2\)fikl
    fjlk.
  @ References: Alhaidari PRA(02)mp/01 [SO(2,1), graded extension and physics];
    Jafari & Shariati PRD(11)-a1109 [projective actions and doubly-special relativity].
Unitary Groups > s.a. holonomy [U(1)]; lie
  algebra; representations; standard model;
  SU(2); yang-mills theories.
  * U(n): The
  dimension is n2; Simple.
  * U(2): tr(AB)
  + tr(AB−1)
  = (tr A) (tr B).
  * SU(n): The
    dimension is n2−1;
    The rank of SU(4) is 3.
  * U(∞) and SU(∞):
    Inductive limits of U(n) and SU(n), respectively.
  @ General references: Spengler et al JMP(12)-a1103 [composite parametrization and Haar measure];
    Zhang a1509 [volumes].
  @ SU(3):
    Gsponer mp/02/JMP [quaternionic parametrizations];
    Kerner a0901
      [from \(\mathbb Z\)3- graded cubic algebra];
    Shurtleff a0908 [formulas for matrices];
    Shurtleff a1001 [and the 8D Poincaré group];
    Grimus & Ludl JPA(10)-a1006 [subgroups];
    Ludl JPA(11)-a1101 [classification of finite subgroups];
    Roelfs a2102 [novel invariant decomposition].
  @ SU(4): Tilma et al JPA(02)mp [Euler angle parametriz];
    Gsponer mp/02/JMP [quaternionic parametrizations].
  @ SU(n): Rudolph & Schmidt mp/01 [orbits on compact M];
    Tilma & Sudarshan JPA(02)mp [Haar measure, Euler angles];
    Bertini et al JMP(06)mp/05 [Euler angles];
    Akhtarshenas a1003 [invariant vector fields and one-forms];
    Shurtleff a1009 [and rotations,
      boosts, and translations in N 2-dimensional spacetime];
    Mujtaba JGP(12) [homogeneous Einstein metrics];
    Haber a1912
      [relations among the generators in the defining and adjoint representations].
  @ U(n): Tilma  & Sudarshan JGP(04)mp/02 [Euler angles];
    Aubert & Lam JMP(03)mp,
    JMP(04)mp [integration];
    Spengler et al JPA(10)-a1004 [parametrization].
  @ U(∞) and SU(∞): in Mavromatos & Winstanley CQG(00)ht/99;
    Borodin & Olshanski AM(05)m.RT/01 [harmonic analysis];
    Swain ht/04,
    ht/04,
    ht/04 [SU(∞)
    is not isomorphic to SDiff(2M)].
  @ Related topics: Croxson PLA(06)qp/04 [SU(2), SU(2,1) and t-dependent Hamiltonians].
Pseudo-Unitary Groups
  > s.a. hamiltonian systems [SU(1,1)]; lie algebras.
  * U(p, q):
  * SU(p, q): Non-compact.
  * SU(1, 1): 3D; Casimir invariant
    C2
    = K32
    − K12
    − K22,
    with eigenvalues \(\hbar\)2
    k(k−1) (discrete) and \(\hbar\)2
    (−λ2−1/4) (continuous);
    It can be parametrized by α, β ∈ \(\mathbb C\)
    with |α|2 +
    |β|2 = 1, for example as
\[U = \left(\matrix{\alpha&\beta\cr\beta^*&\alpha^*}\right),\quad \alpha = \cosh(\tau/2)\,{\rm e}^{-{\rm i}\nu_1}\;,\quad \beta = \sinh(\tau/2)\,{\rm e}^{-{\rm i}\nu_2}\;, \quad \tau > 0\;, \quad \nu_i\in[0,2\pi]\;.\]
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 24 feb 2021