|  Initial-Value Formulation of GR – Formalism and Approaches | 
Existence and Uniqueness of Solutions
  > s.a. history of general relativity.
  * Situation: The initial-value problem
    is known to be well-defined for globally hyperbolic spacetimes, time-non-orientable
    spacetimes whose orientable double cover is globally hyperbolic, and some cases of
    spacetimes with closed timelike curves.
  * Different 3-topologies: They all admit
    good (vacuum) data, but generically evolve into spacetimes that are locally de Sitter
    and develop singularities.
  @ Reviews: Rendall LRR(98),
    LRR(00)gq,
    LRR(02)gq +
    LRR(05)gq.
  @ Long-time evolution: Friedrich CMP(86);
    Christodoulou CQG(99)A [and singularities];
    Anderson CMP(01) [and 3-geometry];
    Klainerman & Nicolò 02;
    Lindblad & Rodnianski CMP(05)m.AP/03 [global existence],
    m.AP/04 [global stability of Minkowski spacetime];
    Choquet-Bruhat & Friedrich CQG(06)gq [Einstein-Maxwell-dust, compact support];
    Parlongue a1004 [breakdown criterion];
    Chruściel a1112 [vacuum, existence and uniqueness];
    Czimek a1609
      [compact support, asymptotically flat solutions].
  @ Closed 3-manifolds:
    Andersson in(04)gq/99;
    Scannell CQG(01)m.DG/00 [flat spacetime].
  @ Different 3-topologies: Witt PRL(86);
    Morrow-Jones; Bengtsson & Holst CQG(99)gq [locally de Sitter];
    Isenberg et al AHP(03)gq/02 [all dimensions];
    Choquet-Bruhat et al CQG(06)gq [Einstein-Maxwell, higher dimensions].
  @ Various types of matter:
    Choquet-Bruhat et al gq/06 [Einstein-scalar];
    Jia & Guo a1909
      [Einstein-Yang-Mills-Higgs system, global existence result].
Characteristic and Related Problems
  * Characteristic problem: A null
    surface initial-value formulation, with initial data assigned on a null surface;
    > s.a. null infinity.
  @ Characteristic problem:
    Bondi et al PRS(62);
    Sachs JMP(62),
    PR(62);
    Penrose in(64);
    Müller zum Hagen & Seifert in(79);
    Penrose GRG(80);
    Bartnik CQG(97)gq/96 [null quasi-spherical gauge];
    Klainerman  & Nicolò CQG(99) [double null, vacuum asymptotically flat];
    Winicour LRR(98)
    – LRR(01)
    – LRR(05);
    Gómez & Frittelli PRD(03)gq [first-order quasilinear];
    Nicolò NCB(04);
    Frittelli PRD(06) [ADM version of Bondi Sachs];
    Caciotta & Nicolò gq/06 [vacuum, small data];
    Reisenberger PRL(08)-a0712;
    Luk a1107 [local existence];
    Chruściel & Jezierski JGP(12);
    Tadmon a1203 [for the Einstein-Yang-Mills-Higgs system];
    Chruściel & Paetz CQG(12)-a1203 [review];
    Winicour PRD(13)-a1303 [new evolution algorithm, affine-null metric formulation];
    Chruściel & Paetz AHP(15)-a1403,
    Paetz JMP(14)-a1403 [and smoothness of scri];
    Reisenberger CQG(18)-a1804 [free null data, Poisson brackets];
    Hilditch et al a1911 [Newman-Penrose formalism];
    > s.a. linearized gravity.
  @ For other theories: Mongwane PRD(17)-a1707 [for f(R) gravity].
  @ Cauchy-characteristic problem: Gómez et al PRD(96) [for Einstein-Klein-Gordon theory];
    Kánnár PRS(96) [asymptotically characteristic].
Different Approaches and Issues > s.a. general relativity
  / asymptotic flatness; einstein's equation;
  holography; numerical relativity.
  * Possibile variables: ADM,
    conformal ADM, Einstein-Bianchi, connection (Ashtekar) variables, ...
  @ Initial-boundary value problem:
    Friedrich & Nagy CMP(99);
    Szilagyi & Winicour PRD(03)gq/02;
    Frittelli & Gómez CQG(03),
    PRD(03)gq,
    PRD(04)gq/03,
    PRD(04)gq [boundary conditions];
    Kreiss et al CQG(07)-a0707;
    Friedrich GRG(09)-a0903 [geometric uniqueness];
    Winicour GRG(09),
    PRD(09)-a0909 [geometric formulation];
    Reula & Sarbach IJMPD(11)-a1009-fs [rev];
    Sarbach & Tiglio LRR(12)-a1203 [rev, continuum and discrete];
    Kreiss & Winicour CQG(14)-a1302 [geometric boundary data];
    Hilditch & Ruiz CQG(18)-a1609 [for free-evolution formulations];
    An & Anderson a2103 [and quasi-local Hamiltonians].
  @ Mathematical: Beig & Szabados CQG(97)gq [global conformal invariant Y];
    Esposito & Stornaiolo gq/00 [and elliptic operators];
    Etesi JMP(02)gq/01 [rigidity theorems];
    Rendall gq/01-GR16;
    Lindblom & Scheel PRD(02) [energy norms and stability];
    Dafermos gq/02-CM [uniqueness and Reissner-Nordström stability];
    Karp a0906 [harmonic gauge, well-posedness of problem];
    Klainerman IJMPD(13)-MG13 [current state].
  @ Modified ADM formulation: York PRL(99)gq/98,
    Esposito & Stornaiolo FPL(00)gq,
    gq/00;
    Pfeiffer & York PRD(03);
    Jantzen NCB(04)gq/05 [Taub function = densitized lapse];
    > s.a. canonical general relativity.
  @ Other formulations:  Seriu PRD(00)gq [Laplace eigenvalues];
    Bona et al PRD(03) [generally covariant, with vector field Z];
    Garfinkle & Gundlach CQG(05)gq [tetrad];
    Anderson et al CQG(05) [evolving conformal geometry];
    Alcubierre & Mendez GRG(11)-a1010 [in curvilinear coordinates];
    Maxwell a1407 [expansion, conformal deformation and drift];
    > s.a. Threading.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 3 apr 2021