|  Geometry of Schwarzschild Spacetime | 
Slicings and Coordinates > s.a. coordinates [Fermi coordinates];
  schwarzschild spacetime [interior solutions].
  @ Flat spacelike slices: in Hawking & Hunter CQG(96)gq;
    Qadir & Siddiqui IJMPD(06) [and Reissner-Nordström].
  @ Maximal slicing:
    Beig & Ó Murchadha PRD(98);
    Beig AdP?gq/00.
  @ General references: Fukuyama & Kamimura MPLA(91) [connection variables];
    in Kuchař PRD(94)gq;
    Gergely JMP(98) [harmonic coordinates];
    Hernández-Pastora et al gq/01 [Lichnerowicz];
    Malec & Ó Murchadha PRD(03),
    PRD(09) [constant mean curvature];
    Rosquist GRG(04)gq/03 [various];
    Francis & Kosowsky AJP(04)sep-gq/03 [general form];
    Pareja & Frauendiener PRD(06)gq [constant R];
    Kol gq/06 [from action];
    Bel a0709;
    Biswas a0809;
    Cattani a1010,
    Deser GRG(14)-a1307 [pedagogical derivations];
    Unruh a1401 [various coordinate systems, pedagogical];
    Fromholz et al AJP(14)apr [coordinates matter].
  @ Painlevé-Gullstrand: Martel & Poisson AJP(01)apr-gq/00;
    Czerniawski CoP(06)gq/02;
    Lemos & Silva a2005 [maximal];
    > s.a. spherical symmetry.
  @ Without coordinates: Álvarez gq/07 [using the bundle of orthonormal Lorentz frames].
  @ Related topics:
    Kling & Newman PRD(99) [null cones];
    Rama PLB(04) [in terms of branes and antibranes];
    Ballik & Lake a1005 [invariant 4-volume];
    Vakili AHEP(18)-a1806 [classical polymerization];
    Röken a2009 [horizon-penetrating coordinates];
    > s.a. foliations; Penrose Inequality.
Line Element and Related Geometrical Properties
  > s.a. spherical symmetry; Tortoise Coordinate.
  * In Schwarzschild coordinates:
    The d-dimensional line element is
ds2 = −(1−2GM/r) dt2 + (1−2GM/r)−1 dr2 + rd–2 dΩ2 .
* In null coordinates: The 4D line element is (dΩ2 = dθ2 + sin2θ dφ2)
ds2 = −(1−2GM/r) dv2 + 2 dv dr + r2 dΩ2 = x−2 [2 du dx − x2(1−2GMx) du2 + dΩ2],
    with u:= t − r − 2GM ln(r−2GM)
    and x:= r−1
    (\(\cal I\)+).
  * Finkelstein extension:
    An extension into the future, using v:= t
    + {r + 2M ln |r−2M|};
    It is convenient (and sufficient) for studying the gravitational collapse of a star
    [@ Finkelstein PR(58)].
  * Eddington-Finkelstein coordinates:
    The coordinates v, r, θ, φ,
    such that the 4D line element can be written as
ds2 = (1−2M/r) dv2 − 2 dvdr − r2 dΩ2 ,
with v:= t + r + 2 M ln(r−2M), the advanced time parameter; Or t', r, θ, φ, in terms of which
ds2 = (1−2M/r) dt' 2 − (4M/r) dt' dr − (1+2M/r) dr2 − r2 dΩ2 ;
    Their motivation is that they show that the metric is regular at r = 2M, and can be used
    across the horizon; > s.a. black-hole solutions [evaporating].
  * Isotropic
    coordinates: The 4D line element is
ds2 = −[(1−GM/2r)/(1+GM/2r)]2 dt2 + (1+GM/2r)4 (dx2 + dy2 + dz2) .
  @ General references: Marolf GRG(99)gq/98 [embedding diagram];
    Jacobson CQG(07)-a0707 [when is \(g_{tt} g_{rr} = -1\)?];
    Paston & Sheykin CQG(12) [classification of embeddings].
  @ Causal properties: He & Rideout CQG(09)-a0811 [explicit causal structure].
  @ Extensions:
    Frønsdal PR(58);
    Rosen AP(71);
    Klösch & Strobl CQG(96);
    Mitra ap/99 [??];
    Abbassi PS(01)gq/99;
    > s.a. Kruskal Extension.
Connection and Curvature
  > s.a. geodesics [including Jacobi equation]
  and particles in schwarzschild spacetime.
  * Connection coefficients:
    The non-equivalent, non-vanishing ones in 4D are
| Γ010 = GM/[r(r−2GM)] | Γ133 = −(r−2GM) sin2θ | 
| Γ100 = GM(r−2GM)/r3 | Γ212 = Γ313 = r−1 | 
| Γ111 = −GM/[r(r−2GM)] | Γ233 = −sinθ cosθ | 
| Γ122 = −(r−2GM) | Γ323 = (tanθ)−1 . | 
* Curvature components: The non-equivalent, non-vanishing ones in 4D are (σAB is the standard metric on r = const)
R0A0B = R1A1B = GMr−3σAB , RABCD = 2GMr−3 (δAC δBD − δAD δBC) .
  * Curvature invariants:
    The value of the 4D Kretschmann invariant is \(R_{abcd}\, R^{abcd} = 48\, (GM)^2 r^{-6}\).
  * Singularities: While the singularities
    at θ = 0, π and r = 2GM are removable, the one at
    r = 0 is a true curvature singularity.
  @ Singularity: Hellaby JMP(96);
    Heinzle & Steinbauer JMP(02)gq/01 [distributional];
    Qadir & Siddiqui IJMPD(09)-a1009;
    > s.a. types of singularities.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 3 sep 2020