|  Chiral and Trace Anomalies | 
Chiral Anomalies for Spinor Field Theory
  $ Def: The anomaly in the chiral current
    j5a:=
    ψ* γa
    γ5 ψ for a spinor field.
  * Adler-Bardeen theorem: A result, first
    proved for QED by Adler and Bardeen in 1969, on the cancellation of anomalies to all orders
    when they vanish at one loop; It is also known as anomaly non-renormalization, in the sense
    that it says that the chiral anomaly is given exactly by its lower order contribution.
  * Consequences: The
    \(\pi^0 \to \gamma + \gamma + \gamma\) decay.
  @ General references: Zumino in(83);
    Mañes, Stora & Zumino CMP(86);
    Banerjee ht/99-ch;
    Fröhlich & Pedrini ht/00-in [applications];
    Ekstrand PLB(00)ht [geometrical interpretation];
    Kraus ht/02-conf;
    Gursoy et al PRD(04)ht/03 [and M-theory];
    Adler ht/04-in;
    Bär & Strohmaier CMP(16)-a1508 [in curved backgrounds].
  @  Adler-Bardeen theorem: Mastropietro JMP(07)ht/06 [non-perturbative version];
    Anselmi EPJC(14)-a1402.
  @ And path integrals:
    Fujikawa, Ojima & Yajima PRD(86);
    Gozzi et al IJMPA(05)ht/04  [classical and quantum].
  @ And gravity: Dolgov et al NPB(88);
    Mielke & Kreimer IJMPD(98) [in the Ashtekar approach];
    Klebanov et al PRD(02) [gravity dual];
    Mielke AIP(08)ht [in gauge theory approaches to gravity].
  @ In fuzzy / non-commutative physics:
    Balachandran & Vaidya IJMPA(01)ht/99;
    Martin MPLA(01)ht-proc [non-commutative Minkowski spacetime].
  @ In Lorentz-violating theories: Arias et al PRD(07)-a0705;
    Baeta Scarpelli et al IJMPA(16)-a1505 [Lorentz-breaking QED extension].
  @ Related topics:
    Jackiw ht/01-in [and Chern-Simons terms];
    Obukhov et al FP(97) [in non-Riemannian spacetime];
    Fujikawa IJMPA(08) [vs geometric phase];
    Parameswaran et al PRX(14) [transport in topological semimetals].
Conformal / Trace Anomalies > s.a. Bach Tensor [and AdS-cft];
  black-hole radiation; conformal invariance [breaking];
  cosmological constant; inflation.
  * Idea: The non-vanishing of the regularized
    \(\langle\)T ab\(\rangle\)
    for theories that are classically conformally invariant.
  @ General references:
    Deser HPA(96)ht [review for relativists];
    Cappelli & D'Appollonio PLB(00) [χ and degrees of freedom];
    Cappelli et al NPB(01)ht [consequences];
    Bastianelli & Dass PRD(01)ht [calculation];
    Giannotti & Mottola PRD(09)-a0812 [and massless scalar degrees of freedom];
    Donoghue & El-Menoufi a1503 [non-local effective action and infrared physics];
    Choy a2007 [and Dirac quantization].
  @ And effective action for gravity:
    Mazur & Mottola PRD(01);
    Mottola & Vaulin PRD(06)gq;
    Bardeen a1808 [requirements and proposals].
  @ In curved spacetime: Wald PRD(78);
    Bisabr IJTP(05)ht/04 [thermal radiation in cosmology];
    Tsoupros IJMPA(05) [with boundary, interacting scalar];
    Spallucci et al PRD(06)ht [quantum spacetime];
    Koksma & Prokopec PRD(08)-a0803,
    Thomas et al JHEP(09)-a0904 [and the cosmological constant];
    Koksma a0911-proc [and FLRW cosmology, cosmological constant];
    Mottola IJMPA(10)-a1006 [and dynamical vacuum energy in cosmology];
    Solodukhin PLB(16)-a1510 [boundary terms].
  @ Gravity theories: Dowker CQG(98) [2D dilaton gravity];
    Meissner & Nicolai PLB(17)-a1607
      [constraints from gravitational wave observations, and viable theories];
    > s.a. higher-order gravity;
    semiclassical gravity; unimodular gravity.
  @ Other theories: Nakajima PRD(02) [non-commutative gauge theory];
    Czech ht/07 [2D, discrete scalar field model];
    Giacosa & Hofmann PRD(07)ht [Yang-Mills theory, linear growth with T];
    Andersen et al PRD(11) [QCD];
    > s.a. energy-momentum tensor.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 24 jul 2020