Topology in Physics |
In General
@ General references, reviews:
Finklelstein IJTP(78) [field theory];
Balachandran FP(94)ht/93;
Nash in(98)ht/97;
Rong & Yue 99;
Lantsman mp/01;
Heller et al JMP(11)-a1007 [significance of non-Hausdorff spaces];
Eschrig 11;
Asorey et al a1211 [fluctuating spacetime topology];
Bhattacharjee a1606-ln;
Aidala et al a1708 [and experimental distinguishability].
@ Topological quantum numbers, invariants:
Thouless 98;
Kellendonk & Richard mp/06-conf [bulk vs boundary, and topological Levinson theorem];
> s.a. yang-mills gauge theory.
> Related topics:
see Generic Property; Stability.
> Online resources:
see Frederic Schuller 2015 lecture.
In Classical Theories > s.a. electromagnetism [knotted solutions];
phenomenology of magnetism; Susceptibility
[topological]; theta sectors.
* Gauge theory: The
three paradigms of topological objects are the Nielsen-Olesen vortex
of the abelian Higgs model, the 't Hooft-Polyakov monopole of the
non-abelian Higgs model, and the instanton of Yang-Mills theory.
* Condensed-matter-type
systems: The best-known examples are the quantization of the
magnetic flux that pierces a superconductor, which can only increase
in units of the flux quantum h/2e, the Hall conductance
of a 2D, low-temperature and high-magnetic-field electron gas, which
is quantized in units of the conductance quantum \(e^2/h\), and more
recently the magneto-optical response of a 3D topological insulator,
quantized in units of the vacuum fine-structure constant,
\(\alpha = e^2/\hbar c = 1/137\).
* Hydrodynamics: Topology appears
in the notion of vortex, relevant both for classical and for quantum fluids.
@ Gauge theory:
Monastyrsky 93 [and condensed matter];
Gross JMP(96) [cohomology and connections];
Lenz LNP(05)ht/04,
Jackiw ht/05-en [rev];
Yang IJMPA(12);
> s.a. types of yang-mills theories [on a circle].
@ Condensed matter: Monastyrsky 93 [and gauge theory];
Avdoshenko et al SRep(13)-a1301 [electronic structure of graphene spirals];
news nPhys(17)jul;
Sergio & Pires 19.
@ Topological charges: Saaty ht/01;
> s.a. field theory [topological currents].
@ Related topics: Kiehn mp/01 [topology-changing evolution];
Díaz & Leal JMP(08) [invariants from field theories];
Radu & Volkov PRP(08) [stationary vortex rings];
Seiberg JHEP(10)-a1005 [sum over topological sectors and supergravity];
Mouchet a1706 [in fluid dynamics, rev];
Candeloro et al a2104 [and precision of a finite thermometer];
> s.a. thermodynamic systems [Maxwell theory].
In Gravitation and Cosmology
> s.a. Alexandrov Topology; geon;
lorentzian and riemannian geometry [space
of geometries]; spacetime topology.
* Spacetime topology:
The spacetime manifold can be assigned different topologies; The most
natural ones are the manifold topology, the Alexandroff topology
(generated by gab and
the I ±s), and Johan's
strong topology for compact spacetimes (more stable under limits).
* Spatial topology:
Any compact 3-topology can occur classically, since it can be given a
metric such that R = −k, with k a positive
constant, and with this metric it can be made to satisfy the constraints,
with \(K_{ab} = \lambda\,g_{ab}\), for some constant λ.
@ References: Clarke GRG(71) [and general relativity];
Friedman & Mayer JMP(82) [angular momentum and charge];
Carcassi & Aidala PS(20)-a2006 [spacetime structure may be topological];
> s.a. topology at cosmological scales; topology change.
In Quantum Mechanics > s.a. path integrals
[non-trivial configuration-space topology]; theta sectors.
@ General references: Sudarshan et al AIHP(88);
Balachandran et al 91;
Thouless 98 [topological quantum numbers]; Aharonov
& Reznik PRL(00)qp/99 [local/non-local complementarity];
Suzuki a1107 [homotopy and path integrals];
Asorey et al a1211 [survey];
Neori & Goyal a1501 [fundamental groupoid approach].
@ Topological quantum phases: Buniy & Kephart PLA(08)ht/06 [second-order];
Thiang AHP(15)-a1406,
IJGMP(15)-a1412 [homotopic versus isomorphic];
Witten RNC(16)-a1510-ln [topological phases of matter, and fractional quantum Hall effect];
Asorey nPhys(16)-a1607 [topological matter];
Aguilar et al a1903.
@ Topology and quantum states: Balachandran Pra(01)qp/00-conf;
Dürr et al AHP(06)qp,
JPA(07) [Bohmian mechanics];
Prudêncio & Cirilo-Lombardo IJGMP(13)-a1402 [entanglement and non-trivial topologies];
Pérez-Pardo et al IJGMP(15)-a1501 [boundary dynamics and topology change];
Qin et al NJP(18)-a1611 [topological invariants in strongly interacting quantum systems];
Arkinstall et al PRB(17) [lattice with topological states];
> s.a. entanglement; entanglement
and spacetime; models of topology change.
@ Topology on the space of states: Bugajski PLA(94);
Zhu & Ma PLA(10).
> Related topics: see aharonov-bohm effect;
Aharonov-Casher Effect.
In Quantum Field Theory > s.a. CPT [violation mechanism];
QCD; QED [in non-trivial backgrounds];
qft in curved backgrounds.
@ General references: Monastyrsky 87;
Schwartz 93, 94 [III, IV];
Bandyopadhyay 03.
@ Related topics: Blau IJMPA(89) [representation-independence];
Jackiw mp/05 [fractional quantum numbers, non-trivial phonons];
Baez & Stay LNP-a0903 [physics, topology, logic and computation];
Brunetti et al AHP(09)-a0812 [2D massive bosons];
Buchholz et al LMP(19)-a1808 [linking numbers];
Bessa & Rebouças a1910 [charged-particle motion in topologically non-trivial spaces];
Acquaviva et al a2012 [topologically inequivalent quantizations];
> s.a. charge.
In Other Theories > s.a. Kink;
knot theory in physics; spacetime topology.
@ String theory:
Balachandran et al NPB(87);
Boi IJGMP(09).
@ Quantum topology:
Isham CQG(89);
Isham et al CQG(90);
Isham in(91);
Finkelstein & Hallidy IJTP(91) [and quantum logic];
Grib & Zapatrin IJTP(96)gq/95 [topology as an observable, and the space of topologies];
Schlesinger JMP(98);
> s.a. quantum spacetime [relational topology].
@ Other quantum gravity: Patrascu JMP(16)-a1410 [and the black-hole information paradox];
> s.a. canonical quantum gravity.
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 21 apr 2021