CPT Symmetry and Theorem |
In General
> s.a. anomalies; Charge Conjugation;
M-theory; particle statistics;
QED; quantum klein-gordon field.
* Remark: It is a symmetry
of any Lorentz-invariant, local quantum field theory, whether or not the
individual factors are.
* Operator: The operator
θ = PCT is anti-unitary; for a charged scalar field,
θ−1
φ(x) θ = φ(−x)*.
* Proofs: Lüders and Pauli
proved it based on Lagrangian quantum field theory; Jost gave a more general
axiomatic quantum field theory proof.
@ Proofs of theorem:
Lüders AP(57),
reprinted AP(00);
Streater & Wightman 64;
in Feynman in(87) [topological];
Greenberg FP(06)hp/03;
Greaves & Thomas SHPMP(14)-a1204;
Selover & Sudarshan a1308 [more general, using action principles].
@ Related topics:
Norbury EJP(90) [for electromagnetism];
Greenberg PLB(98)ht/97 [and locality];
Duck & Sudarshan 98;
Borchers & Yngvason mp/00;
Kostelecký ed-02;
Socolovsky IJTP(04)mp [Dirac field];
Scurek AJP(04)may [group and representations];
Carballo & Socolovsky IJTP(09)-a0811 [CPT from P and T subgroups of Lorentz group];
Carballo & Socolovsky a0906 [irreducible representations of CPT group for QED];
Greaves BJPS(10)#1
[geometrical understanding, using classical analog];
> s.a. spin-3/2 fields.
@ Generalized: Grimus & Rebelo PRP(97) [P and CP, in gauge theories];
Soloviev JMP(98) [non-local quantum field theory];
Dastidar & Dastidar MPLA(99) [non-local gauge theories];
Chaichian et al PLB(03)ht/02,
Franco & Polito JMP(05) [non-commutative theories];
Jannussis et al NCB(05) [non-Hermitian H];
Mannheim PLB(16)-a1512 [non-Hermitian H and unstable states];
Betzios et al a2004
[gauging the CPT symmetry, and the Riemann hypothesis].
Violation and Tests
> s.a. CP violation; early-universe baryogenesis;
matter; parity.
* Possible reasons: Extra
spacetime dimensions; Violation of Lorentz invariance; Quantum-gravity effects.
* For electrons: The relative
difference for g of e+
and e− is less than 2 ×
10−12.
* For neutral kaons: 2009,
No deviation from CPT symmetry and quantum mechanics observed at the KLOE
experiment at the DAΦNE \(e^+\)-\(e^-\) collider.
* For baryons: The relative
mass difference of p and \(\bar p\) is less than \(10^{-10}\) [@ news
pn(98)may],
and the magnitudes of the antiproton and proton magnetic moments differ by less than
5 parts per million [> see hadrons].
@ General references: Colladay AIP(03)hp [rev];
Kostelecký a1010-conf [introduction];
Bailey a1906-conf [status].
@ And Lorentz invariance: Greenberg PRL(02)hp,
objection Chaichian et al PLB(11)-a1103,
response Greenberg a1105 [implies violation];
Dütsch & Gracia-Bondía PLB(12) [not so clear].
@ Theoretical models: Bertolami et al PLB(97)hp/96 [and baryogenesis];
Adam & Klinkhamer NPB(01)hp,
PLB(01)ht [abelian Chern-Simons theory];
Klinkhamer ht/01-conf,
PRD(02)ht/01,
hp/05-conf
[chiral fermions, non-trivial spacetime topology];
Chaichian et al EPJC(13)-a1205 [Lorentz-invariant];
> s.a. modified lorentz symmetry and QED.
@ Cosmological, cmb: Feng et al PRL(06);
Cabella et al PRD(07)-a0705 [WMAP 3-year data];
Auriemma a0711-conf [rev];
Xia et al PLB(10)-a0908 [polarization];
Li et al ApJ(15)-a1405;
Zhao et al JCAP(15)-a1504 [efficient probe].
@ Neutrinos: Minataka & Uchinami PRD(05)hp [supernova neutrinos];
Hooper et al PRD(05)hp [high-energy];
Tsukerman a1006;
Wang & Pan a1512 [oscillations];
Huang et al a1906 [IceCube data, and Lorentz symmetry].
@ Other tests: Commins AJP(93)sep [RL];
Colladay & Kostelecký PLB(95)hp,
PRD(95)hp,
hp/96-conf [high-energy physics];
Bluhm et al PRL(99);
Geer et APEX PRL(00);
Hughes et al PRL(01) [muonium spectroscopy];
Murayama PLB(04) [Ks vs neutrinos];
Canè et al PRL(04) [neutron, bound on boost effects];
Bernabeu et al hp/06-conf;
Di Domenico et KLOE FP(10) [neutral kaons];
Toma et al PRL(12) [bound from GRB polarization];
Friedman et al a1809 [active galaxies];
Arzano a1904
[from muon lifetime, Planck-scale deformations];
Wang & Zhao a2002 [binary black hole gravitational waves].
Time Reversal
> s.a. arrow of time; electromagnetism;
entropy; finsler geometry and physics;
PT Symmetry.
* Remarks: Distinguish
between irreversibility and T or CPT violation (Lüders: T should
be called "motion reversal"); Finding T violation would be
equivalent to finding CP violation, because of the CPT theorem.
* And experiment: One of
the ways of looking for T violation is to look for a neutron electric
dipole moment; The Hamiltonian would contain a term d σ
· E, and, under T, σ \(\mapsto\)
−σ and E \(\mapsto\) E,
so H would not be invariant; > for the current best bound,
see neutrons.
@ General references: Schrödinger SPAW(31) [time reversal of a diffusion process];
Ramsey PR(58) [and magnetic poles];
Rosen AJP(73)apr [for electromagnetic quantities];
Sachs Sci(72)may,
87;
Domingos IJTP(79) [rev];
Price qp/96-conf [interactions and boundary conditions];
Kuenzi et al PRA(02)cm [in solid-state physics];
North PhSc(08)apr [new view];
Arntzenius & Greaves BJPS(09) [in classical electromagnetism];
Oreshkov & Cerf nPhys(15)-a1507 [in quantum theory, operational formulation];
Roberts a1607 [comments on the definition];
Ardakani a1802-MS;
Huang et al a1609 [2-dimensional spaces];
Roberts psa(18).
@ Violation: Ryder CP(94);
news PT(99)feb;
Gutkin JPA(07) [dynamical, and chaos];
Greentree & Martin Phy(10) [in photon lattices];
Vaccaro FP(11)-a0911 [and unidirectionality of time];
Polonyi PRD(11)-a1109 [dynamical breakdown, and causality];
de Vries et al PRL(11)
+ news sd(11)oct [and deuteron electric-dipole and magnetic-quadrupole form factors];
news PT(12)nov,
cbs(12)nov
+ Zeller Phy(12)
[first clear, direct evidence of T violation in BaBar observations of transition rates between B-meson states];
Roberts a1306,
a1306-conf [three mechanisms];
Ashtekar SHPMP-a1307-conf [new perspective];
Polonyi Symm-a1503 [explicit];
Roberts psa(15).
@ Experiment: news pn(98)nov,
Mavromatos pw(98)dec [violation observed in kaons];
Mumm et al PRL(11)
+ news po(11)nov [in beta decay, limit].
> And gravity: see canonical
general relativity; modified theories.
In Curved Spacetime
> s.a. quantum field theory effects in curved spacetime [Unruh effect].
* Remark: It does not hold
for a black hole background metric, in the sense that there is no operator
θ such that $−1
= θ $ θ−1,
where $ is the superscattering matrix for pure and mixed states.
@ References:
Brout & Englert NPB(81),
Anandan PRL(98) [and cosmology];
Buchholz et al CQG(00) [AdS];
Hollands CMP(04)gq/02 [and operator product expansion];
Arntzenius SHPMP(04)
[Lorentz group representations, and t-orientation];
Varlamov PLB(05)mp [de Sitter space, spinor fields].
In Quantum Gravity > s.a. non-commutative
field theory; time in quantum gravity.
* Idea: The CPT theorem is
a consequence of usual quantum field theory; It uses special relativity
(in that it assumes the symmetries of Minkowski spacetime) and quantum
mechanics, and therefore it need not hold in quantum gravity.
* Scenarios: It may arise
from modified uncertainty relations [@ Amelino-Camelia MPLA(97)gq], or from geons.
@ General references: Penrose in(79),
in(81);
Page PRL(80);
Wald PRD(80);
Wald in(81);
Hawking CMP(82);
Page GRG(82);
Banks et al NPB(84);
Hawking NPB(84);
Gross NPB(84);
Neacsu IJTP(84);
Banks NPB(85);
Mavromatos NIMB(04)hp/03, SPP-hp/03;
Mavromatos hp/04-conf, LNP(05)hp/04 [tests with neutrinos];
Mavromatos LNP(05)gq/04-ln [review, emphasis on spacetime foam];
Klinkhamer & Rupp PRD(04);
Bernabeu et al PRD(06)ht [entangled neutral mesons];
Mavromatos PoS-a0707 [and decoherence];
Rovelli & Wilson-Ewing PRD(12)-a1205 [time reversal and parity in covariant lqg].
@ In string theory: Colladay & Kostelecký PRD(97)hp;
Mavromatos JPCS(09)-a0904,
FP(10)-a0906.
@ Other scenarios: Alexanian & Balachandran PLB(02)ht/01 [geons].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 27 may 2021