Geons |
In General
> s.a. 3D manifolds [prime factors]; general
relativity solutions; Mapping Class.
* History: A precursor
was given by the concept of gravitational bag; The original meaning
of the term, as used by Wheeler, referred to non-topological geons.
> Similar concepts:
see defects; Kinks.
Non-Topological > s.a. Boson Stars;
Galileon Field; solitons.
* Idea: An object with
particle-like properties made out of the spacetime metric, and possibly
other fields.
@ General references: Wheeler PR(55);
Power & Wheeler RMP(57) [thermal];
Brill & Hartle PR(64) [gravitational waves].
@ Modified gravity: Vollick CQG(08)-a0807,
CQG(10)-a1004 [1+1 Jackiw-Teitelboim theory with higher-order corrections];
Afonso et al JCAP(17)-a1705 [Born-Infeld gravity].
@ Gravity + scalar field: Barreto et al PRD(96)gq/05 [turning point instability];
Sones gq/05 [+ electromagnetism].
@ Related topics: Cooperstock et al MPLA(95) [non-existence],
IJMPD(96)gq/95 [critical analysis of Brill-Hartle geon];
Perry & Cooperstock CQG(99)gq/98 [stability];
> s.a. anti-de sitter spacetime [instability].
Topological (More recent meaning) > s.a. CPT symmetry;
measurement in quantum theory; spin-statistics theorem.
* Idea: An object with
particle-like properties made out of spatial geometry; Part of the motivation
is that one may be able to account for some non-gravitational charges (e.g.,
electric charge) using topology.
* Remark: The concept is
similar to that of gravitational "kink", but the latter is used
to describe a topologically non-equivalent metric tensor fields defined
on a given fixed manifold.
* Types: They can be spinorial,
fermionic, possibly chiral; Some can switch between bosonic and fermionic
behavior after interactions.
* Question: Can they be preons?
* Example: Wheeler's "single
wormhole mouth" (not "quasi-localized").
@ General references: Finkelstein & Misner AP(59);
Finkelstein JMP(66);
Cohen & Wald JMP(72);
Sorkin JPA(77);
Shastri et al IJTP(80);
Whiston JPA(81) [classification, including fermionic];
Williams & Finkelstein IJTP(84);
Bais et al NPB(87);
Sorkin in(86),
in(89);
Bugajska IJTP(87);
Dunn et al JMP(91);
Williams & Zvengrowski JMP(92);
Dunn et al JMP(96) [geodesic incompleteness];
Anderson & Brill PRD(97)gq/96;
Balachandran et al GRG(11)-a1009 [and non-commutative spacetimes].
@ Phenomenology: Srivastava PRD(87);
Olmo & Rubiera-García JCAP(14) [at particle accelerators].
@ Solutions: Harriott & Williams GRG(03) [4D rotating kink];
Louko et al CQG(05)gq/04 [with spin and charge];
> s.a. black-hole solutions.
@ With cosmological constant: Dunn & Williams JMP(89),
et al JMP(94) [locally de Sitter].
@ In 1+1 dimensions: Vasilić & Vukašinac
CQG(96);
Klösch & Strobl PRD(98)gq/97.
@ In 2+1 dimensions: Harriott & Williams NCB(05) [kink number];
Stevens et al CQG(09)-a0809 [no asymptotically flat ones];
Galloway et al CMP(12)-a1005 [non-existence result].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 26 jun 2018