![]() |
Solutions
> s.a. QCD / general relativity solutions;
gauge theory solutions; instantons;
topological field theories.
* BPS (Bogomolny-Prasad-Sommerfield):
An extreme self-dual, spherically symmetric monopole solution of the Bogomolny
equation in gauge theory.
@ General references:
Prasad & Sommerfield PRL(75);
Sutcliffe IJMPA(97)ht [BPS, rev];
Kovner et al JHEP(02)hl [existence?];
Bielawski CMP(98) [and Gibbons-Manton metric];
Casana et al PRD(12)-a1210 [generalized BPS monopoles];
Marmo et al PRD(19)-a1907
[electric charge in a magnetic monopole distribution].
@ 't Hooft-Polyakov:
Kleihaus et al MPLA(98) [interaction energy];
Lepora PLB(02)ht/01 [embedded in larger G];
Bais & Striet PLB(02)ht [in Alice electrodynamics];
Rajantie JHEP(06) [mass, quantum];
Qandalji JPA(07)ht [restoration of Lorentz invariance];
Vachaspati PRD(16)-a1511 [scattering].
@ 't Hooft-Polyakov, excited:
Fodor & Rácz PRL(04);
Forgács & Volkov PRL(04).
@ BPS multimonopoles: Taubes CMP(82);
Gibbons & Manton PLB(95)ht;
Gibbons & Townsend PLB(95)ht;
Shnir & Zhilin PRD(15)-a1508 [with group G2].
@ In Einstein-Yang-Mills: Weinberg ht/99-conf;
Bjoraker & Hosotani PRD(00)ht;
Gibbons & Townsend CQG(06) [higher-dimensional].
@ In Einstein-Yang-Mills-Higgs: Lue & Weinberg PRD(99)ht;
Kleihaus & Kunz PRL(00)ht [monopole-antimonopole];
Hartmann et al PRL(01)ht/00;
Bronnikov et al JETP(02)gq [gravitational properties];
Brihaye & Ioannidou CQG(05) [SU(5) monopoles];
Oliynyk AHP(06)-a0810 [existence].
@ Supersymmetric:
Chamseddine & Volkov PRL(97) [supergravity];
Lü, Pope & Stelle CQG(98)ht/97 [p-brane, supergravity];
Chalmers & Hanany NPB(97) [3D supersymmetric gauge theory];
Stern & Yi PRD(00)ht [supersymmetric dyons];
Rebhan et al JHEP(06) [corrections to mass and charge];
Weinberg & Yi PRP(07)ht/06 [rev].
@ Related topics: Olive CzJP(82) [self-dual];
Goncharov MPLA(98) [SU(n), Kerr];
Baez et al CMP(00)ht/98 [in fuzzy physics];
Li & Lu PRD(00)gq [in Brans-Dicke theory];
Lugo et al PLB(00) [in Anti-de Sitter space];
Meckes ht/02 [SU(5)];
Díaz & Lázaro-Camí a0811 [arbitrary dimension];
Kihara a0910 [5D, multi-charged Tchrakian monopoles];
Seifert PRL(10)-a1008 [in a Lorentz-violating field theory];
Teh et al AP(14) [one-and-a-half-monopoles solution].
> Other types: see defects [torsional monopoles];
kaluza-klein models; non-commutative field theory;
supersymmetry in field theory.
Phenomenology > s.a. Bogomolny Inequality;
duality; topological defects.
* In the early universe: Monopole
production arises from the spontaneous breaking of a symmetry group G to
G/H, when π3(G/H)
= 0, so that there can be point defects in the fields.
* Monopole problem: The fact
that no evidence is seen for the presence of monopoles in the early universe,
despite the fact that theories predict a high density of them, for example as
a consequence of spontaneous symmetry breaking;
> s.a. cosmological inflation.
* Mass predictions and limits:
In GUTs, about 1016 GeV; Experimentally,
mmon ≥ 600 GeV if s = 0,
900 GeV if s = 1/2.
@ Early-universe cosmology: & Kibble;
Everett et al PRD(85) [annihilation];
Rajantie PRD(03)hp/02 [phase transitions].
@ Effective monopoles in spin ices:
Matson SA(09)sep [evidence];
news pw(09)sep,
BBC(09)oct [and "magnetricity"];
Benton et al PRB(12) [emergent electrodynamics].
@ Effective monopoles in Bose-Einstein condensates: Pietilä & Möttönen
PRL(09) [creation in a spinor BEC];
Ray et al Nat(14)jan-a1408
+ news at(14)jan, comment Bender et al a1408 [in a synthetic magnetic field].
@ Gravitational effects: Chakraborty PS(98);
Rahaman & Ghosh MPLA(08)-a0801 [semiclassical, in Brans-Dicke theory];
Kagramanova et al GRG(08) [orbits];
Banyas & Franklin CQG(17)-a1708 [gravitational field];
Nascimento et al PRD(19)-a1812 [spacetime metric, f(R) gravity];
Kaloper a2012 [flat space instability in quantum gravity];
> s.a. gravitational lensing.
@ Related topics:
Bal & Schechter PRD(84) [and p decay];
Achúcarro et al JHEP(05)ht [decay of deficit angles];
Vento ap/05,
IJMPA(08)-a0709 [monopolium, monopole-antimonopole bound states];
Kobayashi et al a1007
[Alice strings and a possible solution to the monopole problem];
Saurabh & Vachaspati a1904-conf [monopole-antimonopole pair phenomenology];
Bojowald et al a2011
[upper bounds on the magnetic charge of elementary particles];
> s.a. cosmic rays; types of black holes;
types of dark matter.
Experimental Searches
* Status:
2009, There is evidence that effective (not fundamental) monopoles are found in spin ices,
a family of rare-earth compounds; The most common spin ices have a structure consisting of
corner-sharing tetrahedra, with a spin at each corner; The spins are "frustrated,"
so they compromise and form a structure with two spins pointing into each tetrahedron and two
pointing out, similarly to the ordering of hydrogen bonds in water ice; Flipping an inward
pointing spin to an outward one is analogous to exciting a monopole-antimonopole pair in
adjacent tetrahedra.
* Cosmic ray monopole flux: It is bounded by
f ≤ 7.1 × 10−11/cm/sr/sec.
@ Experimental searches:
Alvarez et al Sci(70)jan [lunar sample];
Cabrera PRL(82) [event];
Incandela et al PRD(86) [flux limit];
Friseh Nat(90)apr;
Abbott et al PRL(98) [mass limit];
Kalbfleisch et al PRL(00) [bounds];
Wick et al APP(03)ap/00 [signatures];
Fang et al Sci(03)oct
+ pw(03)oct [claim];
Lubsandorzhiev NIMA(05)ap [neutrino telescopes, speculative];
Milton RPP(06)he [status];
Bendtz et al PRL(13) [in polar volcanic rocks];
Abbasi et IceCube PRD(13);
Aartsen et al EPJC(16)-a1512 [in IceCube];
Pierre Auger Collaboration PRD(16)-a1609 [no candidates in the data collected between 2004 and 2012];
Rajantie PT(16)oct [rev];
Vachaspati PRL(16) [proposal of search in wave-wave collisions].
@ Production:
Gould et al PRD(19)-a1902 [in heavy-ion collisions];
Carlos & Gay Ducati a2010 [in pp accelerators].
@ Updates:
news ns(10)sep [hunt may be futile];
news sn(18)jan.
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 30 dec 2020