Magnetic Monopoles: Solutions and Phenomenology  

Solutions > s.a. QCD / general relativity solutions; gauge theory solutions; instantons; topological field theories.
* BPS (Bogomolny-Prasad-Sommerfield): An extreme self-dual, spherically symmetric monopole solution of the Bogomolny equation in gauge theory.
@ General references: Prasad & Sommerfield PRL(75); Sutcliffe IJMPA(97)ht [BPS, rev]; Kovner et al JHEP(02)hl [existence?]; Bielawski CMP(98) [and Gibbons-Manton metric]; Casana et al PRD(12)-a1210 [generalized BPS monopoles]; Marmo et al PRD(19)-a1907 [electric charge in a magnetic monopole distribution].
@ 't Hooft-Polyakov: Kleihaus et al MPLA(98) [interaction energy]; Lepora PLB(02)ht/01 [embedded in larger G]; Bais & Striet PLB(02)ht [in Alice electrodynamics]; Rajantie JHEP(06) [mass, quantum]; Qandalji JPA(07)ht [restoration of Lorentz invariance]; Vachaspati PRD(16)-a1511 [scattering].
@ 't Hooft-Polyakov, excited: Fodor & Rácz PRL(04); Forgács & Volkov PRL(04).
@ BPS multimonopoles: Taubes CMP(82); Gibbons & Manton PLB(95)ht; Gibbons & Townsend PLB(95)ht; Shnir & Zhilin PRD(15)-a1508 [with group G2].
@ In Einstein-Yang-Mills: Weinberg ht/99-conf; Bjoraker & Hosotani PRD(00)ht; Gibbons & Townsend CQG(06) [higher-dimensional].
@ In Einstein-Yang-Mills-Higgs: Lue & Weinberg PRD(99)ht; Kleihaus & Kunz PRL(00)ht [monopole-antimonopole]; Hartmann et al PRL(01)ht/00; Bronnikov et al JETP(02)gq [gravitational properties]; Brihaye & Ioannidou CQG(05) [SU(5) monopoles]; Oliynyk AHP(06)-a0810 [existence].
@ Supersymmetric: Chamseddine & Volkov PRL(97) [supergravity]; Lü, Pope & Stelle CQG(98)ht/97 [p-brane, supergravity]; Chalmers & Hanany NPB(97) [3D supersymmetric gauge theory]; Stern & Yi PRD(00)ht [supersymmetric dyons]; Rebhan et al JHEP(06) [corrections to mass and charge]; Weinberg & Yi PRP(07)ht/06 [rev].
@ Related topics: Olive CzJP(82) [self-dual]; Goncharov MPLA(98) [SU(n), Kerr]; Baez et al CMP(00)ht/98 [in fuzzy physics]; Li & Lu PRD(00)gq [in Brans-Dicke theory]; Lugo et al PLB(00) [in Anti-de Sitter space]; Meckes ht/02 [SU(5)]; Díaz & Lázaro-Camí a0811 [arbitrary dimension]; Kihara a0910 [5D, multi-charged Tchrakian monopoles]; Seifert PRL(10)-a1008 [in a Lorentz-violating field theory]; Teh et al AP(14) [one-and-a-half-monopoles solution].
> Other types: see defects [torsional monopoles]; kaluza-klein models; non-commutative field theory; supersymmetry in field theory.

Phenomenology > s.a. Bogomolny Inequality; duality; topological defects.
* In the early universe: Monopole production arises from the spontaneous breaking of a symmetry group G to G/H, when π3(G/H) = 0, so that there can be point defects in the fields.
* Monopole problem: The fact that no evidence is seen for the presence of monopoles in the early universe, despite the fact that theories predict a high density of them, for example as a consequence of spontaneous symmetry breaking; > s.a. cosmological inflation.
* Mass predictions and limits: In GUTs, about 1016 GeV; Experimentally, mmon ≥ 600 GeV if s = 0, 900 GeV if s = 1/2.
@ Early-universe cosmology: & Kibble; Everett et al PRD(85) [annihilation]; Rajantie PRD(03)hp/02 [phase transitions].
@ Effective monopoles in spin ices: Matson SA(09)sep [evidence]; news pw(09)sep, BBC(09)oct [and "magnetricity"]; Benton et al PRB(12) [emergent electrodynamics].
@ Effective monopoles in Bose-Einstein condensates: Pietilä & Möttönen PRL(09) [creation in a spinor BEC]; Ray et al Nat(14)jan-a1408 + news at(14)jan, comment Bender et al a1408 [in a synthetic magnetic field].
@ Gravitational effects: Chakraborty PS(98); Rahaman & Ghosh MPLA(08)-a0801 [semiclassical, in Brans-Dicke theory]; Kagramanova et al GRG(08) [orbits]; Banyas & Franklin CQG(17)-a1708 [gravitational field]; Nascimento et al PRD(19)-a1812 [spacetime metric, f(R) gravity]; Kaloper a2012 [flat space instability in quantum gravity]; > s.a. gravitational lensing.
@ Related topics: Bal & Schechter PRD(84) [and p decay]; Achúcarro et al JHEP(05)ht [decay of deficit angles]; Vento ap/05, IJMPA(08)-a0709 [monopolium, monopole-antimonopole bound states]; Kobayashi et al a1007 [Alice strings and a possible solution to the monopole problem]; Saurabh & Vachaspati a1904-conf [monopole-antimonopole pair phenomenology]; Bojowald et al a2011 [upper bounds on the magnetic charge of elementary particles]; > s.a. cosmic rays; types of black holes; types of dark matter.

Experimental Searches
* Status: 2009, There is evidence that effective (not fundamental) monopoles are found in spin ices, a family of rare-earth compounds; The most common spin ices have a structure consisting of corner-sharing tetrahedra, with a spin at each corner; The spins are "frustrated," so they compromise and form a structure with two spins pointing into each tetrahedron and two pointing out, similarly to the ordering of hydrogen bonds in water ice; Flipping an inward pointing spin to an outward one is analogous to exciting a monopole-antimonopole pair in adjacent tetrahedra.
* Cosmic ray monopole flux: It is bounded by f ≤ 7.1 × 10−11/cm/sr/sec.
@ Experimental searches: Alvarez et al Sci(70)jan [lunar sample]; Cabrera PRL(82) [event]; Incandela et al PRD(86) [flux limit]; Friseh Nat(90)apr; Abbott et al PRL(98) [mass limit]; Kalbfleisch et al PRL(00) [bounds]; Wick et al APP(03)ap/00 [signatures]; Fang et al Sci(03)oct + pw(03)oct [claim]; Lubsandorzhiev NIMA(05)ap [neutrino telescopes, speculative]; Milton RPP(06)he [status]; Bendtz et al PRL(13) [in polar volcanic rocks]; Abbasi et IceCube PRD(13); Aartsen et al EPJC(16)-a1512 [in IceCube]; Pierre Auger Collaboration PRD(16)-a1609 [no candidates in the data collected between 2004 and 2012]; Rajantie PT(16)oct [rev]; Vachaspati PRL(16) [proposal of search in wave-wave collisions].
@ Production: Gould et al PRD(19)-a1902 [in heavy-ion collisions]; Carlos & Gay Ducati a2010 [in pp accelerators].
@ Updates: news ns(10)sep [hunt may be futile]; news sn(18)jan.


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 30 dec 2020