Solutions of Gauge Theories |
Spherically Symmetric
> s.a. quantum gauge theory; spherical
symmetry in general relativity; yang-mills gauge theory.
@ General references:
Benguria et al NPB(77);
Schütte AP(92);
Bartnik JMP(97) [SU(n)];
Borasoy & Lee PLB(99)ht;
Brihaye et al PRD(04)ht [Yang-Mills in 4+n dimensions];
Maison CMP(05)gq/04 [Yang-Mills-dilaton, static];
Balasin et al GRG(05)gq/04 [defs, standard model + gravity];
Lux & Johannsen a0802 [magnetic monopole on de Sitter background].
@ Singularities:
Linhart PhD(99)mp/01;
Bizoń & Tabor PRD(01)mp;
Bizoń APPB(02)mp.
@ Related topics: Comay AJP(02)jul [electromagnetism, no spherical radiation];
> s.a. Birkhoff Theorem [in Einstein-Yang-Mills theory].
Other Solutions of Yang-Mills Theories > s.a. instantons;
self-dual solutions; solitons.
* Sphalerons: Static, but
unstable, solutions of Yang-Mills theory coupled to some other field which
acts as an attractive force, e.g. Higgs or gravity; They mediate between
different winding numbers and are used for baryogenesis.
* Merons: Singular, globally
non-trivial gauge field configurations with half-integer topological charge
(instantons have integer topological charge).
@ Vacuum: Selivanov & Smilga PRD(01) [on T3];
> s.a. theta sectors; vacuum.
@ Monopoles: Teh et al IJMPA(10)-a1002 [massive SU(2) Yang-Mills-Higgs theory];
> s.a. monopoles.
@ Sphalerons: Kunz & Brihaye PLB(89) [in Weinberg-Salam theory];
Gal'tsov & Volkov PLB(91) [in Einstein-Yang-Mills];
Gibbons & Steif PLB(94)ht/93,
PLB(95)hp/94;
Straumann & co;
Brihaye & Desoil MPLA(00) [gravitating];
Millward & Hirschmann PRD(03)gq/02 [Einstein-Yang-Mills-Higgs, collapse].
@ In Schwarzschild spacetime: Brihaye et al JMP(00)ht [and de Sitter space];
Tekin PRD(02)ht [Euclidean];
Bizoń et al CQG(07)-a0704 [late time tails];
Bizoń et al CQG(10) [stability, saddle-point dynamics].
@ Homogeneous: Henneaux JMP(82) [and isotropic];
Gotay JGP(89) [reduced phase space].
@ Other symmetries:
Forgács & Manton CMP(80);
Hannibal ht/99,
Rabinowitch TMP(06) [axisymmetric].
@ With other matter:
Kleihaus et al PLB(06) [+ dilaton, particle-like];
Isobe DG&A(10)
[+ Dirac field, regularity and energy quantization].
@ Related topics:
Samuel PRL(96) [merons];
Sarioglu PRD(02) [Liénard-Wiechert potentials];
Ilderton et al AP(10)-a0907 [minimal-energy states, charge creation and annihilation];
Albert a1108 [SU(2) Yang-Mills theory];
Shirokov AACA(18)-a1709 [covariantly constant solutions];
Nian & Qian a1901 [with non-trivial topology];
Kuchynka CQG(19)-a1902 [with vanishing scalar invariants].
> Cosmological:
see cosmological models in general relativity.
> In other curved spacetimes:
see singularities.
References > s.a. yang-mills gauge theory [space of solutions].
@ General: Actor RMP(79);
Izergin et al TMP(79);
Sibner & Uhlenbeck pr(89);
Bor & Montgomery in(90);
Klainerman & Machedon AM(95);
Koshkarov TMP(95) [non-vacuum, non-self-dual];
Singleton TMP(98)ht/99 [from general relativity].
@ Solutions of the (Gauss law) constraint:
Majumdar & Sharatchandra PRD(98)ht [decomposition];
Śniatycki CMP(99) [Yang-Mills-Dirac, solution set];
Salmela JMP(03)ht/02 [SU(3)].
@ Moduli space of solutions: Donaldson JDG(87);
Groisser & Parker JDG(89).
@ Distance between configurations:
Groisser & Murray dg/96 [self-dual, information metric];
Orland ht/96.
@ Solutions of higher-spin theories:
Sezgin & Sundell NPB(07) [4D];
Vasiliev et al TMP(07) [3D, BTZ black hole].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 13 jan 2020