Solutions of Gauge Theories  

Spherically Symmetric > s.a. quantum gauge theory; spherical symmetry in general relativity; yang-mills gauge theory.
@ General references: Benguria et al NPB(77); Schütte AP(92); Bartnik JMP(97) [SU(n)]; Borasoy & Lee PLB(99)ht; Brihaye et al PRD(04)ht [Yang-Mills in 4+n dimensions]; Maison CMP(05)gq/04 [Yang-Mills-dilaton, static]; Balasin et al GRG(05)gq/04 [defs, standard model + gravity]; Lux & Johannsen a0802 [magnetic monopole on de Sitter background].
@ Singularities: Linhart PhD(99)mp/01; Bizoń & Tabor PRD(01)mp; Bizoń APPB(02)mp.
@ Related topics: Comay AJP(02)jul [electromagnetism, no spherical radiation]; > s.a. Birkhoff Theorem [in Einstein-Yang-Mills theory].

Other Solutions of Yang-Mills Theories > s.a. instantons; self-dual solutions; solitons.
* Sphalerons: Static, but unstable, solutions of Yang-Mills theory coupled to some other field which acts as an attractive force, e.g. Higgs or gravity; They mediate between different winding numbers and are used for baryogenesis.
* Merons: Singular, globally non-trivial gauge field configurations with half-integer topological charge (instantons have integer topological charge).
@ Vacuum: Selivanov & Smilga PRD(01) [on T3]; > s.a. theta sectors; vacuum.
@ Monopoles: Teh et al IJMPA(10)-a1002 [massive SU(2) Yang-Mills-Higgs theory]; > s.a. monopoles.
@ Sphalerons: Kunz & Brihaye PLB(89) [in Weinberg-Salam theory]; Gal'tsov & Volkov PLB(91) [in Einstein-Yang-Mills]; Gibbons & Steif PLB(94)ht/93, PLB(95)hp/94; Straumann & co; Brihaye & Desoil MPLA(00) [gravitating]; Millward & Hirschmann PRD(03)gq/02 [Einstein-Yang-Mills-Higgs, collapse].
@ In Schwarzschild spacetime: Brihaye et al JMP(00)ht [and de Sitter space]; Tekin PRD(02)ht [Euclidean]; Bizoń et al CQG(07)-a0704 [late time tails]; Bizoń et al CQG(10) [stability, saddle-point dynamics].
@ Homogeneous: Henneaux JMP(82) [and isotropic]; Gotay JGP(89) [reduced phase space].
@ Other symmetries: Forgács & Manton CMP(80); Hannibal ht/99, Rabinowitch TMP(06) [axisymmetric].
@ With other matter: Kleihaus et al PLB(06) [+ dilaton, particle-like]; Isobe DG&A(10) [+ Dirac field, regularity and energy quantization].
@ Related topics: Samuel PRL(96) [merons]; Sarioglu PRD(02) [Liénard-Wiechert potentials]; Ilderton et al AP(10)-a0907 [minimal-energy states, charge creation and annihilation]; Albert a1108 [SU(2) Yang-Mills theory]; Shirokov AACA(18)-a1709 [covariantly constant solutions]; Nian & Qian a1901 [with non-trivial topology]; Kuchynka CQG(19)-a1902 [with vanishing scalar invariants].
> Cosmological: see cosmological models in general relativity.
> In other curved spacetimes: see singularities.

References > s.a. yang-mills gauge theory [space of solutions].
@ General: Actor RMP(79); Izergin et al TMP(79); Sibner & Uhlenbeck pr(89); Bor & Montgomery in(90); Klainerman & Machedon AM(95); Koshkarov TMP(95) [non-vacuum, non-self-dual]; Singleton TMP(98)ht/99 [from general relativity].
@ Solutions of the (Gauss law) constraint: Majumdar & Sharatchandra PRD(98)ht [decomposition]; Śniatycki CMP(99) [Yang-Mills-Dirac, solution set]; Salmela JMP(03)ht/02 [SU(3)].
@ Moduli space of solutions: Donaldson JDG(87); Groisser & Parker JDG(89).
@ Distance between configurations: Groisser & Murray dg/96 [self-dual, information metric]; Orland ht/96.
@ Solutions of higher-spin theories: Sezgin & Sundell NPB(07) [4D]; Vasiliev et al TMP(07) [3D, BTZ black hole].


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 13 jan 2020