Composite Quantum Systems  

In General > s.a. Composite Systems [general theory, and internal degrees of freedom]; Individuality; quantum states; spin models.
* Idea: Considering a quantum system as composed of subsystems A and B means treating its Hilbert space as the tensor product \(\cal H\) = \(\cal H\)A ⊗ \(\cal H\)B.
* Rem: The view that the physical world forms a compositional hierarchy does not stand up to a close examination of how physics has treated composition.
@ General references: Wilce IJTP(90); Coecke FP(98)qp/01, IJTP(00)qp [characterization]; Kummer IJTP(99) [2 spin-\(1\over2\) particles, state space]; Aerts IJTP(00)qp/01 [paradox], & Valckenborgh IJTP(04) [failure of quantum mechanics]; Johnson mp/06 [formalism]; Blanchard & Brüning PLA(06) [structure of states, envariance]; Albeverio et al RPMP(07) [local invariants]; Blasone et al IJMPA(09) ['t Hooft's quantization proposal]; Khrennikov a0905 [classical vs quantum descriptions, and entanglement]; Jeknić-Dugić et al a1306 [systematic account of decomposition]; Healey SHPMP(13) [conceptual].
@ Subsystems: Orlov PRL(99) [measurement and indeterminism]; Zanardi et al PRL(04)qp/03 [observable-induced partition]; Zanardi et al PRL(04) [partition induced by observables]; Petz RPMP(07) [complementary]; Jordan a0710 [maps describing evolution]; Alicki et al PRA(09)-a0902 [formalism in terms of completely positive maps and correlation functions]; Fields a0906 [consistency of decomposition and consequences]; Fortin & Lombardi FP(14) [partial traces and reduced states]; Jaeger FP(14) [identification of parts, and condition for elementarity]; Stokes et al JMO(17)-a1602 [identifying subsystems using Clausius' second law of thermodynamics]; > s.a. entanglement entropy; open systems.
@ Correlations: Kübler & Zeh AP(73); Linden et al qp/02 [n-way].
> Related topics: see diffraction; entangled systems [multipartite]; entropy; Envariance; Mereology; mixed states; observables [subdynamics]; particle statistics [including identical composite objects]; renormalization; scattering.

Few Degrees of Freedom > s.a. Born-Oppenheimer Approximation.
@ General references: Thirring 81; Glöckle 83; Parker & Doran qp/01-proc [2-particle basis and entanglement]; Greene PT(10)mar [universality]; Rohwer et al JPA(10) [objects with spatial extent and structure, non-commutative quantum mechanics]; Sancho AP(13)-a1307 [optical properties of multiparticle systems in collective and entangled states vs product states].
@ Two-body problem: Droz-Vincent PLA(90) [relativistic, in constant B field]; Torres et al JMP(10)-a0911 [two atoms in a cavity, concurrence and purity]; Chacón-Acosta & Hernández a1110 [hydrogen atom, semiclassical treatment]; Harshman AIP(12)-a1210 [observables and entanglement].
@ Three-body problem / systems: Mohr et al AP(06); Guevara et al PRL(12)-a1110 + news pw(12)jun [three-body states]; Turbiner et al a1707 [in d dimensions]; > s.a. Efimov Effect; Three-Body Forces.
@ Other few-particle systems: Wyderka et al PRA(17)-a1703 [four-particle states and their two-particle marginals].
@ Molecules: Arndt et al Nat(99)oct + pn(99)oct [buckyballs, C60]; Armour et al PRP(05) [stability of few-charge systems]; Mitin a1508 [hydrogen molecular ion H2+]; Doma et al JMolP(16)-a1509 [H2 molecule and H2+ ion with a magnetic field].

Other Types of Systems > s.a. Fermions [composite]; many-particle quantum systems; particles [elementary vs composite].
@ Discrete + continuum, particle + field: Stenholm & Paloviita JMO(97)qp; Aguiar Pinto & Thomaz JPA(03)qp/02 [decay]; Kupsch Pra(02)mp [particle + IR divergent boson]; Gardas JPA(11)-a1103 [spin-boson Hamiltonian]; > s.a. Dicke and Friedrichs Model; entropy in quantum theory [Wehrl entropy].
@ Other systems: Quesne & Tkachuk PRA(10)-a0906 [with minimal length].


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 9 aug 2017