In General > s.a. scattering; wave phenomena.
* Idea: The spreading of a wave interacting with a scatterer or slit; In the context of semiclassical mechanics, it describes the manner in which quantum mechanics smooths over discontinuities in classical mechanics.
* History: In the 1660s, Grimaldi observed an alteration of color in shadows.
@ History: Saatsi & Vickers BJPS(11) [inconsistency and untruth in Kirchhoff's theory].

Special Effects > s.a. radiation; Talbot Effect.
* Kapitza-Dirac effect: The diffraction of a well-collimated particle beam by a standing wave of light; There are plans to use it to build an electron interferometer 10,000 times more sensitive than ones based on light.
@ Kapitza-Dirac effect: Batelaan CP(00)qp; Freimund et al Nat(01)sep; Marshall FP(06)qp/04 [for atoms, interpretation]; Batelaan RMP(07) [two-color version]; > s.a. electron [charge density probe].
@ Rayleigh limit: Rueckner & Papaliolios AJP(02)jun [demo]; Tamburini et al PRL(06)ap [overcoming, light orbital angular momentum]; > s.a. optical technology.
@ Beating the diffraction limit: news nat(11)jul [for sound waves]; > s.a. microscopes.
@ Diffraction-free light beams: Durnin et al PRL(87) [Bessel beams]; > s.a. Airy Beams.
@ Anomalous photon diffraction: Cardone et al PLA(04) [non-Lorentzian].
@ QED calculations: Daniels et al a1612; Stöhr a2003 [diffraction in second-order QED and the quantum nature of light].
@ Related topics: Firstenberg et al PRL(09) + Novikova Phy(09) [reducing diffraction]; Saltiel et al PRL(10) [non-linear diffraction from a virtual beam]; news pw(14)oct [butterfly-wing-inspired material and "reverse diffraction"].

Diffraction in Time > s.a. dissipation.
* Idea: Diffraction of matter waves observed with a time-domain aperture (such as an absorbing barrier or "shutter" that is periodically switched on and off).
@ References: Godoy PRA(02), PRA(03); Torrontegui et al PRA(11)-a1011 [explanation and observability]; Goussev PRA(13)-a1304 [exactly solvable model]; Beau & Dorlas IJTP(15)-a1310 [and the semiclassical approximation]; Kamiński et al PRD(18)-a1807 [at a time grating, electron-positron pair creation].

@ General: Nye et al PRS(95) [by half-plane]; Hannay PRS(95) [path interpretation]; Kälbermann JPA(01)qp/00, qp/00 [wave packet]; Marklund JPA(05)ap [radiation in diffractive media]; Brosa a0911 [electromagnetic waves, new method]; Baake & Grimm ZKri(11)-a1105 [mathematical diffraction theory].
@ Geometric theory: De Micheli et al RVMP(00)mp/02 [and Riemannian geometry]; De Micheli et al RJMP(06)-a1307; Ben Adda a1409 [in terms of fluctuating geodesics representing paths of least time].
@ Of electrons: Beau EJP(12) [path-integral approach]; Khatua et al PRL(14) + synopsis [addition of an Aharonov-Bohm phase].
@ Of atoms: Gould et al PRL(86) [by light].
@ In nuclear physics: Arkhipov PPN(07)phy/05 [Glauber theory rev].
@ By random point sets: Baake et al a0803; Baake & Grimm PRB(09)-a0810 [distinguishing order from disorder]; Baake & Koesters PhilM(11)-a1007-conf; Lenz & Moody a1111 [by ergodic spatial stationary processes].
@ In high-energy physics: Gottfried yr(72); Hebecker PRP(00) [deep inelastic scattering]; issue NPPS(05)146.
@ Of other systems: Hegerfeldt & Köhler PRA(98)qp/97 [composite systems – atomic vs molecular]; > s.a. neutrons.

main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 2 apr 2020