Variation of Newton's Gravitational Constant  

In General > s.a. cosmic microwave background; gravity theories; variation of constants [and Milgrom's a0].
* History: 1937, Dirac conjectured that G changes in time, based on the large-number hypothesis; The idea was picked up by Pascual Jordan, who tried to develop a modified general relativity based on it, with G as a scalar field; G(t) is also predicted by Mach's principle.
* Theoretical motivation: The constant G becomes a function of dyamical variables in theories with extra dimensions such as Kaluza-Klein theory, or 4D scalar-tensor theories with a dilaton-like scalar field, such as Brans-Dicke theory.
@ General references: Dirac Nat(37)feb; Jordan 52; Wesson PT(80)jul; Damour et al PRL(88); Accetta et al PLB(90); Schücking PT(99)oct [Jordan's proposal]; Moss et al IJMPD(10)-a1004-GRF [conceptual]; Dungan & Prosper AJP(11)jan [and cosmology]; Kragh 16 [hist].
@ Brans-Dicke theory: García-Bellido et al PRD(94)ap/93 [inflationary]; Carneiro IJMPD(05)gq [and coincidence];
@ Other scalar-tensor: Torres MPLA(99)gq [and astrophysics]; Bronnikov et al G&C(02)gq; Rubano & Scudellaro GRG(05)ap/04 [and the cosmological constant, renormalization]; Clifton & Barrow PRD(06)gq; Wetterich PRD(14)-a1308 [variable gravitational constant (cosmon), and consequences for cosmology]; Ooba et al PTEP(17)-a1702 [cosmological constraints].
@ From extra dimensions: Mansouri et al PLA(99)gq [varying d]; Mbelek & Lachièze-Rey G&C(02)gq [Kaluza-Klein and spatial variations?]; Loren-Aguilar et al CQG(03)ap; Dehnen et al G&C(05).
@ And Mach's principle: Unzicker gq/03 [theory]; Unzicker & Fabian gq/06 [solar system tests and constraints]; Darabi ASS(12)-a0802 [cosmic acceleration and Λ].
@ Other theory: Sidharth NCB(00)ap/99; Mbelek & Lachièze-Rey A&A(03)gq/02 [and α]; MacGibbon a0706 [bounds from black-hole entropy]; Demir FP(09) [and vacuum energy]; Finster & Röken a1604 [general relativity with dynamical gravitational coupling]; Perivolaropoulos PRD(17)-a1611 [sub-millimeter spatial oscillations]; Paliathanasis a1806 [and the cosmological constant, dynamical analysis].
> Other theory: see action for general relativity; cosmological constant; general relativistic cosmology; MOG; spherical symmetry in general relativity.

And Observations > s.a. tests of general relativity.
* Status: 2003, Presently the most accurate method to test for the constancy of G is lunar laser ranging.
* Experimental bounds: Planetary observations give G−1 dG/dt = (2 ± 4) and (−2 ± 10) × 10−12 yr−1; Notice that (Hubble time)−1 ~ 10−10 yr−1; Other bounds come from the variation of the period of PSR 1913+16; 2004, G−1 dG/dt = (4 ± 9) × 10−13 yr−1.
@ Observational constraints: Gaztañaga et al PRD(02)ap/01 [from supernovas]; Copi et al PRL(04)ap/03, Clifton & Barrow PRD(05) [nucleosynthesis]; Umezu et al PRD(05) [cosmological]; Bisnovatyi-Kogan IJMPD(06)gq/05 [from binary pulsars]; Krastev & Li PRC(07)nt [terrestrial nuclear lab data]; Chan & Chu PRD(07), Galli et al PRD(09) [from cmb anisotropies]; Yunes et al PRD(10)-a0912 [gravitational-wave observations]; Martins et al PRD(10)-a1001 [correlated variations of α and G]; Nesseris et al JCAP(11)-a1107 [growth of structure]; Pitjeva & Pitjev SSR(12)-a1008 [planets and spacecraft]; Iorio CQG(11)-a1108 [constraints on spatial anisotropy]; Zhu et al ApJ(15)-a1504 [from 21-year timing of pulsar binary J1713+0747, consistent with no change]; Masuda & Suto PASJ(16)-a1602 [from transiting planets].
@ Sinusoidal variation: Schlamminger et al PRD(15)-a1505 [analysis]; Iorio CQG(16)-a1506 [G does not vary sinusoidally in time as reported]; Desai EPL(16)-a1607 [using frequentist model comparison tests].
@ Other phenomenology: Amendola et al ap/99 [supernovae and acceleration]; Nordtvedt CQG(03) [and lunar laser ranging]; Benvenuto et al PRD(04) [white dwarfs]; in Williams et al PRL(04)gq; Umezu et al PRD(05)ap [cosmological bounds]; Tomaschitz IJTP(05) [and solar luminosity]; Jofré et al PRL(06)ap [and neutron star equilibrium]; García-Berro et al IJMPD(06) [from supernova Hubble diagram], JCAP(11)-a1105 [from white dwarf stars]; Sidharth FPL(06) [cosmology and Solar System]; Tartaglia & Radicella a0801 [luminosity of type Ia supernovae]; Li IJMPD(09) [evolution of binary-star orbits]; Córsico et al JCAP(13)-a1306 [pulsating white dwarfs]; Bel a1402 [and Earth and Moon orbital anomalies].
@ Inhomogeneities: Clifton et al MNRAS(05)gq/04.

main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at – modified 26 jun 2018