Non-Commutative Gauge Theories  

In General > s.a. non-commutative field theories \ types of gauge theories.
@ Reviews: Wess JPCS(06)ht; Blaschke et al Sigma(10)-a1004 [on flat Groenewold-Moyal spaces].
@ General references: Dubois-Violette et al JMP(90), Chan & Tsou AP(90); Akman JPAA(97)qa/95 [Lagrangian quantization]; Langmann APPB(96)ht/96; Carow-Watamura & Watamura CMP(00) [on fuzzy sphere]; Terashima JHEP(00)ht [and ordinary gauge theory]; Madore et al EPJC(00)ht; Morita ht/00; Bak et al PLB(01); Brace et al IJMPA(02)ht/01-in; Wess CMP(01) [non-abelian]; Hu & Sant'Anna IJTP(03); Floratos & Iliopoulos PLB(06)ht/05; Behr PhD(05)ht [non-constant commutators]; McCabe IJTP(06); de Goursac JPCS(08)-a0710 [effective action]; Rosenbaum et al Sigma(08)-a0807 [spacetime diffeomorphisms]; de Goursac PhD(09)-a0910; Weiß PhD(09)-a1003 [geometric, deformation quantization of principal fibre bundles]; van Suijlekom a1110 [and higher-derivative gauge theories]; Masson AIP(12)-a1201 [mathematical structures]; Chandra a1301-PhD; Géré et al PRD(14)-a1312; Boeijink & van den Dungen JMP(14)-a1405 [on almost-commutative manifolds].
@ Existence, no-go results: Saha et al ht/06-wd [not every gauge theory can be extended to non-commutative space]; Arai et al PLB(08) [circumventing no-go theorem]; Hanada a1604-proc [existsnce of a non-perturbative formulation].
@ On a curved non-commutative spacetime: Behr & Sykora NPB(04); Burić et al JHEP(10)-a1003, PRD(12); Schenkel & Uhlemann Sigma(10)-a1003 [U(1) gauge theory].
@ Hamiltonian / Lagrangian formulation: Kase et al PTP(99)ht/98, PTP(99) [Lagrangian]; Cuesta et al ht/06 [non-commutative phase space]; Amorim & Farias PRD(02)ht/01 [non-abelian, Hamiltonian]; Banerjee PRD(03) [non-commutative E fields and consistency].
@ Path-integral quantization: Habara PTP(06)ht; Zobin qp/06.
@ Lattice gauge theory: Balachandran et al JGP(98)hl/96; Ambjørn et al JHEP(00)ht; O'Connor & Ydri JHEP(06)hl [U(1), Monte Carlo].
@ Monopoles / solitons: Baez et al CMP(00)ht/98; Gopakumar et al JHEP(00); Jiang ht/00; Nekrasov ht/00-ln.
> Related topics: see BRST transformations; instantons; renormalization; Wilson Loop.

Electrodynamics, QED
@ General references: Riad & Sheikh-Jabbari JHEP(00)ht [dipole moments]; Kruglov EP(03)qp/02; Morita PTP(03)ht/02 [Lorentz-invariant]; Berrino et al PRD(03); Gaete & Schmidt IJMPA(04)ht/03 [Coulomb's law]; Kauffman IJTP(06)qp/05 [diagrammatic, including discrete]; Carone & Kwee PRD(06)hp [Lorentz-invariant]; Calmet EPJC(07)ht/06; Yang EPJC(09)-a0704 [as large-N gauge theory]; Madore IJGMP(08) [and Schwinger's chiral action]; Yang IJMPA(09) [and emergent gravity]; Balachandran et al IJMPA(09) [on the Groenewold-Moyal plane]; Jafari a0912; Burić et al PRD(11)-a1009 [chiral fermions]; van den Dungen & van Suijlekom JNCG(13)-a1103; > s.a. modified electromagnetism.
@ Vacuum birefringence: Abel et al JHEP(06); Maceda & Macías PLB(11).
@ Other phenomenology: Chaichian et al PRL(01)ht/00 [H atom, Lamb shift]; Fu & Sheng PRD(07)ht [corrections to muon pair production]; Zahn PhD(06)-a0707 [dispersion relations]; Ilderton et al Sigma(10)-a1003 [effects of strong background fields]; Ghoderao et al a1806 [bound on non-commutativity scale]; > s.a. photon phenomenology in quantum gravity.

Different Theories > s.a. BF theory; GUTs; quantum constrained systems; topological field theories.
* Standard model: In the non-commutative formulation of Connes and Chamseddine, one of the three generations of fermions has to possess a massless neutrino; Although the theory is an essentially classical one, it predicts what is expected to be approximately the right value for the Higgs mass.
@ Standard model: Kastler & Schücker TMP(92)ht/01; Sładkowski IJTP(96)ht/94; Brout NPPS(98)ht/97; Wulkenhaar ht/97; Martín et al PRP(98); Schücker LNP(05)ht/01, ht/03-en; Wohlgenannt ht/03-conf; Martinetti mp/03 [intro]; Khoze & Levell JHEP(04); Barrett & Dawe Martins JMP(06), Dawe Martins JMP(06) [vacuum]; Barrett JMP(07)ht/06 [Lorentzian]; Connes JHEP(06)ht [with neutrino mixing]; Chamseddine & Connes JGP(08)-a0706, PRL(07)-a0706 [explanation of standard model]; Sakellariadou IJMPD(11)-a1008-fs; Farnsworth & Boyle NJP(14)-a1401, NJP(15)-a1408 [simpler reformulation, and non-associative geometry]; Chamseddine et al JHEP(14)-a1411 [from higher-degree Heisenberg commutation relation]; Martinetti a1503-proc [twisted spectral geometry]; Brouder et al a1504 [as an extension of the non-commutative algebra of forms]; Boyle & Farnsworth JHEP-a1604 [new algebraic structure]; Sakellariadou a1605-proc; Lizzi a1805-proc [rev].
@ Standard-model extensions: Marculescu ht/05; Stephan PRD(09)-a0901; van den Broek & van Suijlekom JHEP(13)-a1211; Stephan a1305-proc; van den Broek a1409-PhD [MSSM].
@ Unified theories: Lizzi et al MPLA(96); Chamseddine & Connes FdP(10)-a1004 [all interactions, including gravity]; Sakellariadou JPCS(15)-a1503; Nguyen a1510-conf.
@ Other theories: Lizzi et al MPLA(98) [mirror fermions]; Das & Rey NPB(00)ht [open Wilson lines]; Saraikin JETP(00)ht [Morita equivalence]; Okawa & Ooguri NPB(01) [coupling to gravity]; Mesref NJP(03)ht/02 [map ordinary → deformed gauge theory]; Krykhtin G&C(03) [Yang-Mills + matter]; Slavnov PLB(03) [U(n)]; Caporaso et al ht/04-fs [topologically massive]; Banerjee et al PRD(04)ht [and Lorentz symmetry]; Ivanov & Zupnik TMP(05) [supersymmetric gauge theories]; Stern PRD(08) [particlelike solutions]; Armoni PLB(11) [2D U(N) theories]; Ahmadiniaz et al a1811 [U(N) Yang-Mills theory]; > s.a. chern-simons theory; higgs mechanism; non-commutative gravity.
> Related topics: see causality and causality violations; spin networks [gauge networks]; theta sectors.

main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at – modified 20 nov 2018