Black Holes in Higher Dimensions  

In General > s.a. black-hole geometry and topology; black-hole uniqueness and hair; gravitational lensing.
* Possibilities: While in 4D there are very stringent results on the geometry and topology of stationary black holes, in higher dimensions there are black strings, black p-branes, black rings, "black Saturns", and no no-hair theorem; But also more instabilities.
@ Perturbations: Kodama & Ishibashi PTP(03)ht, PTP(04)ht/03 [master equation]; Cardoso et al PRD(05)ht/04, Kunduri et al PRD(06)ht [rotating]; Zhidenko PRD(06)gq [quasinormal modes, massive scalar field]; González et al JHEP(10)-a1003 [quasinormal modes of Chern-Simons black holes]; Abdolrahimi et al PRD(10) [of 5D Schwarzschild-Tangherlini black holes]; Godazgar CQG(12) [Schwarzschild-Tangherlini solutions]; Hollands & Wald CMP(13)-a1201 [stability]; Murata CQG(13)-a1211 [extreme black holes, instabilities]; Dias & Reall CQG(13)-a1301 [Schwarzschild black holes, algebraically special]; Emparan & Tanabe PRD(14)-a1401 [universal quasinormal modes].
@ First law: Rogatko PRD(05)ht; Kastor & Traschen JHEP(06)ht; Kastor et al JHEP(07) [boosted Kaluza-Klein black holes]; Ashtekar et al CQG(07)gq/06 [isolated horizons in AdS]; Ren & Li MPLA(08)-a0705 [n-dimensional Vaidya]; Wei PLB(09) [d-dimensional Reissner-Nordström].
@ Other thermodynamics: Tosa PRD(86); Accetta & Gleiser AP(87); Carter & Neupane PRD(05)gq [Kerr-AdS]; Åman & Pidokrajt PRD(06); Yazadjiev PRD(06) [5D dilaton black holes]; Nouicer CQG(07)-a0706 [from gup, to all orders in \(\hbar\)]; Goldstein & Jena JHEP(07)ht [unified formalism]; Åman & Pidokrajt a1004 [Myers-Perry black holes]; Astefanesei et al CQG(10) [quasilocal formalism]; Bravetti et al GRG(13)-a1211 [geometrothermodynamics]; > s.a. black-hole thermodynamics.
@ Graviton radiation: Cardoso et al PRL(06)ht/05 [particle rates], JHEP(06)ht/05; Cornell et al JHEP(06).
@ Other radiation: Banks et al PLB(98)ht/97 [M-theory]; Kanti AIP(03)hp; Casadio & Germani PTP(05)ht/04 [holographic]; Harris & Kanti PLB(06)ht/05 [4+D-dimensional]; Kanti & Winstanley a1402-in [Hawking radiation, rev].
@ Other phenomenology: Mao et al a1008 [as particle accelerators]; Brito et al PRD(12)-a1207 [tidal acceleration of orbiting bodies].
> Related topics: see 3D black holes; black-hole analogs; black holes in modified theories [including 2D]; brane-world gravity; twistors.

In Five Dimensions > s.a. kaluza-klein models / black-hole geometry and topology; hořava gravity; kerr metrics; numerical black holes.
@ General references: Dobiasch & Maison GRG(82) [Jordan's theory]; Chodos & Detweiler GRG(82) [spherical]; Pollard JPA(83) [dyonic black holes with scalar charge, antigravitating]; Gauntlett et al CQG(99); Emparan & Reall GRG(02); Ida & Nakao PRD(02)gq [properties]; Elvang & Horowitz PRD(03)ht/02 [and bubbles]; Elvang et al JHEP(05)ht/04 [bubble-black hole sequences]; Kol et al PRD(04)ht/03, Sorkin et al PRD(04)ht/03 [compactified spacetime]; Arcioni & Lozano-Tellechea PRD(05)ht/04 [stability]; Bondarescu IJMPD(05)ht; Harmark & Obers ht/05 [Kaluza-Klein, phases]; Herdeiro et al JHEP(08)-a0805 [double]; Tanabe et al PRD(10)-a1009 [multipole moments and classification of black objects]; Iguchi et al PTPS(11)-a1106 [solitonic solution-generating methods]; Chowdhury & Vercnocke JHEP(12)-a1110 [new instability].
@ Schwarzschild-like, Schwarzschild-Tangherlini: Lake JCAP(03); Millward gq/06.
@ Einstein-Maxwell-dilaton theory: Stelea et al PRD(11)-a0909 [double black hole]; Kleihaus et al a1605-Ent [rotating].
@ Other charged: Liu & Wesson CQG(97); Kunz & Navarro-Lérida PRL(06) [Einstein-Maxwell-Chern-Simons]; Lü et al CQG(10) [5D minimal supergravity]; Brihaye et al PRL(11)-a1101 [Einstein-Yang-Mills-Chern-Simons theory, phase transition]; Stelea et al a1108 [Kaluza-Klein multi-black holes].
@ Rotating: Larsen NPB(00)ht/99; Cvetič et al PRD(04)ht [charged, supergravity]; Aliev MPLA(06)gq/05-in [charged, slowly rotating]; Giusto & Saxena CQG(07)-a0705 [stationary axisymmetric]; Lü et al NPB(09)-a0804; Brihaye & Delsate PRD(09)-a0806 [charged]; Anabalón et al IJMPD(11)-a1009.
@ Black rings: Emparan & Reall PRL(02) [rotating], CQG(06)ht [rev].
@ With cosmological constant: Cvetič et al PLB(04)ht [charged Kerr-de Sitter]; Brecher et al JHEP(05) [charged, in AdS]; Kunduri & Lucietti PRD(05) [Kerr-(A)dS]; Madden & Ross CQG(05) [Kerr-AdS uniqueness].
@ Schwarzschild-Gödel: Barnich & Compère PRL(05)ht [charges and thermodynamics]; Konoplya & Abdalla PRD(05)ht [perturbations].
@ In Einstein-Maxwell-Gauss-Bonnet theory: Biswas & Chakraborty IJTP(10); Taj et al GRG(12)-a1104 [thermodynamics]; Brihaye a1108 [+ Λ].

Higher Dimensions > s.a. black holes [supergravity]; brane-world gravity; quantum black holes.
* Result: A stationary, analytic black-hole spacetime satisfying Einstein’s equation must be axisymmetric.
@ Reviews: Emparan & Reall LRR(08)-a0801; Obers LNP(09)-a0802; Tomizawa & Ishihara PTPS(11)-a1104; Reall IJMPD(12)-a1210-MG13.
@ General references: Clément GRG(86); Gibbons & Wiltshire AP(86); Frolov et al AdP(87); Myers PRD(87) [generalized Majumdar-Papapetrou, compactified]; Breitenlohner et al CMP(88); Koikawa & Shiraishi PTP(88); Mignemi GRG(90) [SO(1, N–1) × SO(KN)]; Fadeev et al PLA(91)-a1006 [with Ricci-flat internal dimensions]; Deser AIP(97)ht [electromagnetic duality]; Klemm & Sabra PLB(01)ht/00, JHEP(01)ht/00 [with cosmological constant]; Cai & Galloway CQG(01)ht [topology and area]; Gibbons et al PTPS(02)gq [non-uniqueness]; Mann & Stelea PLB(06)ht/05 [Taub-NUT-Reissner-Nordström]; Kleihaus et al AIP(08)-a0710; Moncrief & Isenberg CQG(08)-a0805 [symmetries]; Chruściel JMP(09)-a0812; Frolov JPCS(09)-a0901 [hidden symmetries and integrability of equations]; Brihaye et al PLB(12)-a1201 [charged, squashed, in odd dimensions]; Emparan et al JHEP(14)-a1410 [bumpy]; Kleihaus & Junz a1603-MG14.
@ Static: Dereli & Obukhov PRD(00)gq/99 [Einstein-Maxwell-Klein-Gordon]; Gallo GRG(04)gq/03; Punzi et al AP(07)gq/06 [no static spherically symmetric]; Rogatko PRD(06)ht [charged, classification]; Kleihaus et al PLB(09)-a0904 [with S2 × Sd–4 event-horizon topology]; Frolov & Shapiro PRD(09)-a0907 [with quadratic curvature corrections].
@ Rotating: Vasudevan et al CQG(05)ht/04 [Myers-Perry, particles and scalar fields]; Gibbons et al PRL(04) [with cosmological constant]; Aliev PRD(06) [Einstein-Maxwell]; Hollands et al CMP(07)gq/06, Hollands & Ishibashi CMP(09) [stationary must be axisymmetric]; Chen & Lü PLB(08)-a0705 [Kerr-NUT-(A)dS, Kerr-Schild form]; Sheykhi PRD(08)-a0711 [Einstein-Maxwell-dilaton]; Dias et al JHEP(10)-a1011 [in AdS]; Allahverdizadeh et al PRD(10)-a1004 [extremal, charged, odd dimensions], JPCS(11)-a1012 [charged]; Dias et al JHEP(11)-a1105 [with scalar hair and only one Killing field]; Myers a1111-ch [Myers-Perry black holes]; Cariglia et al FdP(12)-a1112-conf [using Killing-Stackel and Killing-Yano tensors]; Ghosh & Papnoi EPJC(14)-a1309 [spinning Einstein-Yang-Mills black holes]; Blázquez-Salcedo et al PRD(14)-a1311 [Einstein-Maxwell-dilaton].
@ Rotating, stability: Dias et al PRD(09)-a0907, JHEP(10)-a1001, PRD(10)-a1006 [instabilities and phases]; Shibata & Yoshino PRD(10)-a1004 [bar-mode instability]; Dolan CQG(14)-a1312 [thermodynamic stability]; Emparan et al JHEP(14)-a1402 [large-D analysis]; Dias et al JHEP(14)-a1402 [topology-changing transition to black rings] .
@ In Kaluza-Klein theory: Park CQG(98) [supergravity]; Kocinski & Wierzbicki RGC(04)gq/01 [two-time theory]; Horowitz & Wiseman a1107-ch [rev].
@ Different theories: Matyjasek et al PRD(06) [higher-order]; Ayón-Beato et al JHEP(10) [Lifshitz black holes]; Gingrich JHEP(10) [non-commutative-geometry inspired, and the LHC]; Myung PRD(13)-a1308 [instability of Schwarzschild-Tangherlini solutions in 4th-order gravity].


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 22 may 2016