Laws of Black-Hole Thermodynamics |

**In General** > s.a. black-hole
thermodynamics and specific black-hole
types; gravitational thermodynamics.

* __In various theories__:
Laws of black-hole mechanics can be derived in any theory of gravity by
varying the expression that gives their energy as a function of various
parameters; If the theory is diffeomorphism-invariant, the entropy term
will be proportional to the horizon area; The specific form of the field
equations enters in the coefficient of d*S* in the first law – the
expression for *T* – and in the greybody factors for the radiation
spectrum (as Visser pointed out, the field equations are not directly
involved in the fact that there is radiation); Similarly, obtaining the
right form of the entropy or radiation spectrum in the semiclassical
sector of a theory of quantum gravity only indicates that the limit is
consistent with classical gravity.

@ __Intros, reviews__: Compère gq/06-ln.

**Zeroth Law**

* __Idea__: The surface gravity *κ* is
constant on the horizon, like temperature; For a Kerr-Newman black hole,

*κ* = 4π (*r*_{+}*c*^{2}
− *GM*)/*A*, *A*
= 4π*Gc*^{−4}[2*GM*^{2}
− *Q*^{2} + 2 (*G*^{2}*M*^{4
}− *J*^{2}*c*^{2}
− *GM*^{2}*Q*^{2})^{1/2}]
.

**First Law** > s.a. isolated
horizons; Smarr Formula.

* __Idea__: The
relationship usually called the "first law of black-hole thermodynamics"
is actually the black-hole version of the fundamental identity of
thermodynamics, analogous to d*E* = −*p* d*V*+ *T*
d*S* (rather than the first law d*E* = δ*W* + δ*Q*,
which is a more general expression of the conservation of energy),

d*M* = Ω · d**J** + (*κ*/4π) d*A* + Φ d*Q* ,

with Ω:= **a**/*α* = ** L**/4*M*^{3}
appearing in the expression for the Killing vector field tangent to the
black-hole horizon *l*^{a}
= *k*^{a} + Ω* m*^{a}
(*k* and *m* are the timelike and spacelike Killing
vectors, respectively), Ω = 4π*J*/*MA* is constant for a
stationary black hole, and Φ = 4π*Qr*_{+}/*A*,
where *Q* is here the black hole electric charge.

* __Other backgrounds__:
Has been shown to hold in AdS black holes, but the correct results are
from around 2005.

@ __General references__: Wald in(93)gq;
Sorkin & Varadarajan CQG(96)gq/95;
Iyer PRD(97)gq/96;
Fursaev PRD(99)ht/98 [energy vs Hamiltonian];
Fatibene et al AP(99)ht/98;
Hayward CQG(98)gq/97 [and relativistic thermodynamics];
Mukohyama PRD(99)gq/98
[Noether charge form]; Amsel et al PRD(08)-a0708
[physical process version, bifurcate Killing horizons]; Wall JHEP(09)-a0901
[critique of attempts at proof]; Ropotenko a1105;
Dolan CQG(11)-a1106
[pressure and volume]; Corda JHEP(11)-a1107
[effective temperature and corrections]; Dolan in(12)-a1209
[*p*d*V* term]; Kelly JHEP(14)-a1408
[without entanglement]; Ma & Zhao CQG(14)-a1411 [corrected form];
Armas et al a1512 [gravitational tension and black-hole volume].

@ __Quasilocal first law__: Mukohyama & Hayward CQG(00)gq/99;
Frodden et al PRD(13)-a1110;
Chatterjee & Ghosh a1511 [from local Lorentz transformations]

@ __Special types of black holes__: Gao & Wald PRD(01)gq [charged, rotating];
Le Tiec et al PRD(12)-a1111,
Blanchet et al PRD(13)-a1211
[binary black holes]; McCormick ATMP(14)-a1302
[Einstein-Yang-Mills black holes]; Johnstone et al PRD(13)-a1305
[extremal black holes]; Viaggiu GRG(15)-a1506
[for dynamical apparent horizons, black holes in FLRW universes]; Prabhu a1511
[matter fields with internal gauge freedom]; > s.a. kerr
spacetime; specific black-hole types.

@ __Isolated, dynamical horizons__:
Ashtekar
et al PRD(00)gq,
PRD(01)gq [rotating];
Allemandi et al gq/01;
Booth & Fairhurst
PRL(04)gq/03;
Hayward PRD(04)gq;
Chatterjee & Ghosh PRD(09)-a0812.

@ __Black rings__: Copsey & Horowitz PRD(06)ht/05 [dipole charges];
Astefanesei & Radu PRD(06)ht/05 [quasilocal];
Rogatko PRD(05)ht.

@ __Modified theories__: Rogatko PRD(98)ht [Einstein-Maxwell-axion-dilaton];
Sermutlu CQG(98) [strings];
Gao PRD(03) [Einstein-Maxwell and Einstein-Yang-Mills];
Koga PRD(05)ht [higher-order, AdS black holes];
Kastor & Traschen JHEP(06) [Kaluza-Klein black holes];
Rogatko PRD(07)-a0705 [for black saturns];
Wu et al NPB(08)-a0711 [including braneworld];
Miao et al JCAP(11)-a1107 [violation in *f*(*T*) gravity];
Kunduri & Lucietti CQG(14)-a1310 [5D];
Fan & Lü PRD(15)-a1501 [quadratically extended theories];
> s.a. Smarr Formula.

**(Generalized) Second Law** (Area law) > s.a. black-hole
entropy; entropy bounds; horizons;
Penrose Process; specific black-hole types.

* __Idea__: For any
process, d*A* > 0 (conjecture by Floyd and Penrose, proved
by Christodoulou for some processes, and as a general theorem by Hawking,
assuming the weak energy condition holds), which influences the amount
of energy we can extract from a black hole, *A* ~ black-hole
entropy; The proof of this has been reduced to
the cosmic censorship conjecture.

@ __General references__: Bekenstein PRD(73),
PRD(74);
Hawking PRD(76);
Unruh & Wald PRD(82);
Sewell PLA(87);
Frolov & Page PRL(93)gq [quasistationary];
Mukohyama PRD(97)gq/96
[non-eternal];
Sung gq/97;
Bekenstein
PRD(99)gq [quantum buoyancy];
Shimomura & Mukohyama
PRD(00)gq/99 [charged particles];
Gao & Wald PRD(01)gq [charged, rotating];
Davies & Davis FP(02) [cosmological];
Davis et al CQG(03)ap;
Matsas & Rocha da Silva PRD(05)gq [thought experiment];
Saida CQG(06)gq [and radiation as non-equilibrium process];
He & Zhang JHEP(07)-a0712 [dynamical horizons];
Kabe a1003/PRD;
Chakraborty et al EPL(10)-a1009 [and nature of the entropy function];
Hod PLB-a1511 [and the hoop conjecture].

@ __And entropy bounds__: Pelath & Wald PRD(99)gq;
Flanagan et al PRD(00)gq/99.

@ __Related topics__: Giulini JMP(98)gq [cusps on horizon];
Song & Winstanley IJTP(08)gq/00 [and information theory];
Park IJMPA(09).

@ __In other theories__: Sadjadi PRD(07)-a0709 [*f*(*R*) gravity];
Akbar IJTP(09)-a0808 [Gauss-Bonnet and Lovelock gravity];
Sadjadi PS(11)-a1009 [Gauss-Bonnet gravity];
Sarkar & Wall PRD(11)-a1011 [Lovelock gravity, violation in black-hole merger];
Capela & Tinyakov JHEP(10)-a1102 [massive gravity];
Abdolmaleki et al PRD(14)-a1401 [scalar-tensor gravity];
Wall IJMPD(15)-a1504-GRF [higher-curvature gravity].

@ __Possible violations__: Shimomura et al PRD(00)gq/99;
Park CQG(08)-ht/06;
Eling & Bekenstein PRD(09)-a0810 [mechanisms that make it work].

**Third Law** > s.a. specific black-hole types.

* __Idea__: There
cannot be an equilibrium black hole with vanishing *κ*; Like *T*
in the third law of thermodynamics.

* __Remark__: The
Nernst formulation does not apply to rotating black holes.

@ __References__: Carter in(79);
Israel PRL(86);
Roman GRG(88);
Dadhich & Narayan PLA(97)gq [and gravitational charge];
Wald PRD(97)gq;
Rácz CQG(00)gq;
Lowe PRL(01)gq/00 [semiclassical];
Liberati et al IJMPD(01)gq/00 [extremal].

**Related Topics**

@ __Fourth law__: Loustó NPB(93)gq [scaling laws in critical transitions].

main page
– abbreviations
– journals – comments
– other sites – acknowledgements

send feedback and suggestions to bombelli at olemiss.edu – modified 17 feb 2018