Isolated and Dynamical Horizons  

Isolated Horizons > s.a. laws of black-hole thermodynamics; multipoles; numerical relativity; quasilocal general relativity.
* Relationships: A Killing horizon is always an isolated horizon.
@ General references: Ashtekar et al CQG(99)gq/98, ATMP(00)gq/99 [phase space], CQG(00)gq/99 [mechanics], AdP(00)gq/99, PRL(00)gq, CQG(02)gq/01 [geometry]; Date CQG(00)gq [spin coefficients]; Ashtekar et al ATMP(02)gq [2+1]; Gourgoulhon & Jaramillo PRP(06)gq/05, Jaramillo IJMPD(11) [3+1 view]; Engle & Liko a1112-ch [rev]; Lewandowski et al a1602-conf [and near-horizon geometries].
@ With matter: Ashtekar & Corichi CQG(00)gq/99 [dilaton]; Corichi et al PRD(00)gq [Einstein-Yang-Mills theory]; Ashtekar et al CQG(03)gq [scalar field]; Corichi et al PRD(06)gq/05 [hairy Einstein-Higgs black holes]; Liko & Booth CQG(08)-a0712 [Einstein-Maxwell-Chern-Simons theory in odd D ≥ 5]; Liko PRD(09)-a0901 [p-form matter fields]; Chatterjee AP(11) [non-minimally coupled scalar fields, Holst action]; Krishnan CQG(12)-a1204 [near-horizon geometry].
@ Entropy: Ashtekar & Corichi CQG(03)gq; Basu et al PRD(10)-a0907; Engle et al PRD(10)-a1006; Pérez & Pranzetti Entr(11)-a1011 [SU(2)-invariant phase space]; Ghosh & Pérez PRL(11)-a1107 [Planck scale and universal horizon temperature]; Diaz-Polo & Pranzetti Sigma(12) [in lqg]; Zhang CQG(14) [from the surface term in the gravitational action].
@ Hair: Corichi & Sudarsky gq/00-MG9; Mao et al a1606 [soft hair, implanted by electromagnetic fields]
@ Other properties: Date CQG(01)gq [and Killing horizons]; Dreyer et al PRD(03)gq/02 [numerical]; Lewandowski & Pawłowski CQG(03)gq/02 [uniqueness]; Pawłowski et al CQG(04)gq/03 [spacetime foliations]; Booth & Fairhurst PRD(08)-a0708 [extremality]; Lewandowski & Pawłowski CQG(14)-a1404 [neighborhoods, radial expansion and stationarity].
@ Quantum: Ashtekar et al CQG(05)gq/04 [with distortion and rotation]; Bojowald & Swiderski PRD(05) [spherical]; Engle JPCS(05)gq [distorted, rotating, entropy]; Beetle & Engle CQG(10)-a1007 [generic horizons]; Engle & Beetle JPCS(12)-a1112 [entropy]; Majhi CQG(14)-a1205 [microcanonical entropy]; Pithis PRD(13)-a1208 [quantum states and entropy]; Majhi CQG(13) [stability], PRD(13), a1312 [thermodynamics]; Bodendorfer CQG(14)-a1402 [entanglement entropy and horizon entropy in loop quantum gravity]; Ghosh & Pranzetti NPB(14)-a1405 [cft/gravity duality]; > s.a. quantum black holes.

Specific Types of Spacetimes > s.a. born-infeld theory; Skyrmions.
@ Rotating: Ashtekar et al PRD(01)gq; Wang & Huang a1505 [symplectic form, entropy].
@ Kerr geometries: Lewandowski & Pawłowski IJMPD(02)gq/01; Röken a1303 [connection variables].
@ Asymptotically AdS: Ashtekar et al CQG(07)gq/06 [covariant phase space, first law]; Booth & Liko PLB(08)-a0808 [supersymmetric].
@ Higher-dimensional spacetimes: Korzyński et al CQG(05)gq/04; Liko & Booth CQG(07)-a0705 [in Einstein-Gauss-Bonnet gravity]; Bodendorfer et al CQG(14)-a1304 [in terms of new variables].
@ Other types of spacetimes: Lewandowski CQG(00)gq/99 [vacuum]; Senovilla JHEP(03)ht [with no trapped surfaces].

Dynamical Horizons > s.a. black-hole phenomenology [evolution]; constraints in general relativity; numerical relativity.
@ General references: Ashtekar & Krishnan PRL(02)gq, PRD(03)gq [fluxes, laws], LRR(04)gq [review, applications]; Hayward PRL(04)gq [first law]; Ashtekar & Galloway ATMP(05)gq [uniqueness, isometries]; Andersson et al PRL(05) [local existence]; Bartnik & Isenberg CQG(06)gq/05 [spherical, nasc]; Hayward gq/06 [conservation laws]; Booth & Fairhurst PRD(08)-a0708 [extremality].
@ Specific spacetimes: Sawayama PRD(06)gq/05 [evaporating Vaidya black hole].
@ Related topics: Di Criscienzo & Vanzo EPL(08)-a0803 [fermion tunneling]; Nielsen & Yoon CQG(08) [surface gravity].


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 13 jun 2016