|  Causal Set Dynamics and Phenomenology | 
In General > s.a. causal sets.
  * Idea: The formulation
    of dynamics must ultimately be done in the context of a quantum theory,
    the most promising approach being a sum-over-histories one, for example
    with amplitudes of the type U(A, B) = ∑
    paths exp{i S/\(\hbar\)}; Until a quantum
    framework can be developed, classical models can provide useful insights.
  @ References: Kastner in(16)-a1411 [and the transactional interpretation of quantum theory];
    Wüthrich & Callender BJPS-a1502 [novel, global notion of becoming].
Sequential Growth Dynamics
  * Idea: A classical
    stochastic evolution scheme in which posets are sequentially grown, with
    covariance and causality restrictions; Each new element is assigned a
    probability of being related to each existing one; A special family of
    probabilities is transitive percolation.
  @ General references: Sorkin IJTP(97)gq,
    IJTP(00)gq;
    Rideout & Sorkin PRD(00)gq/99,
    PRD(01)gq/00;
    Martin et al PRD(01)gq/00 [cosmology];
    Rideout PhD(01)gq/02;
    Varadarajan & Rideout PRD(06)gq/05 [solution];
    Georgiou RSA(05) [random binary growth];
    Krugly a1106,
    a1112;
    Krugly & Stepanian a1111-conf,
    Krugly a1201-conf [directed dyadic acyclic graph].
  @ Mathematical properties: Alon et al AAP(94) [transitive percolation];
    Ash & McDonald JMP(03)gq/02 [characterization],
    JMP(05) [Markov chains and posts];
    Gudder a1208 [the causal poset is directed but not lattice ordered].
  @ Quantum sequential growth models: Gudder a1108,
    a1108,
    a1204,
    a1305,
    a1403,
    IJTP(14)-a1409;
    Surya & Zalel a2003 [criterion for covariance].
Other Proposals
  * Example: 2000, An amplitude
    exp{−bR} has been tested by Reid & Sorkin, but no published
    results.
  * Benincasa-Dowker action: The 2D
    version is S = N − 2N1
    + 4N2 − 2N3,
    where Nm is the number of inclusive orders of
    cardinality m + 1.
  @ In general:
    Wallden JPCS(13) [rev];
    Buck et al CQG(15)-a1502 [action, boundary terms];
    Gorard a2011 [the Wolfram model and algorithmic dynamics].
  @ Action: Sverdlov & Bombelli CQG(09)-a0801 [action in causal set terms, + scalar],
    JPCS(09)-a0905 [+ scalar + gauge field];
    Benincasa & Dowker PRL(10)-a1001;
    Benincasa et al CQG(11)-a1011 [discrete action for a 2D Lorentzian manifold];
    Machet & Wang CQG(21)-a2007 [continuum limit];
    Dowker a2007 [boundary contributions].
  @ Applications: Loomis & Carlip CQG(18)-a1709 [suppression of non-manifold-like sets];
    Cunningham & Surya CQG(20)-a1908 [MCMC simulations in 2D and 3D];
    Mathur et al a2009 [link action and suppression of KR orders].
  @ Other proposals and matter: Criscuolo & Waelbroeck CQG(99)gq/98 [percolation];
    Raptis IJTP(00)gq/99 [algebraic quantization];
    Blute et al IJTP(03)gq/01 [framework];
    Zizzi gq/02;
    Foster & Jacobson JHEP(04)ht [2D growing lattice];
    Bolognesi a1004 [deterministic];
    Gudder a1204,
    IJTP(14)-a1303;
    Dowker et at CQG(20)-a1910 [manifestly covariant framework, covtree];
    Zalel a2008 [structure of covtree].
  @ From spin networks:
    Markopoulou gq/97,
    & Smolin NPB(97)gq,
    & Smolin PRD(98)gq/97 [surfaces].
  @ Observables: Brightwell et al gq/02-proc,
    PRD(03)gq/02;
  Dowker & Surya CQG(06)gq/05.
Matter Dynamics > s.a. Anyons [on graphs];
  non-local quantum field theories.
  * d'Alembertians / wave operators:
    2020, of the two main types of proposals, one is defined at each causal set element
    with no added structure but is dimension-dependent, while the other is independent
    of dimension but requires a choice of preferred past.
  @ General references: Kaloper & Mattingly PRD(06)ap [momentum space diffusion];
    Mattingly PRD(08)-a0708 [energy-momentum non-conservation];
    PRD(09)-a0810 [particle energy-momentum diffusion];
    Philpott CQG(10)-a0911 [simulations];
    Gudder a1403
      [elementary particles as simple c-causets];
    Gudder a1507 [quantum particles];
    Gudder a1508 [wave equations on c-causets];
    Belenchia a1512-MG14;
    Alkofer et al PRD(16)-a1605 [Unruh effect];
    Dable-Heath et al PRD(20)-a1908 [using perturbative algebraic quantum field theory];
    Gogioso et al a2003 [functorial evolution].
  @ Particle propagators: 
    Johnston CQG(08)-a0806,
    PRL(09)-a0909 [Feynman propagator];
    Johnston CQG(15)-a1411 [correction terms for propagators and d'Alembertians].
  @ Scalar fields:
    Sverdlov a0807 [bosonic fields];
    Dowker et al PRD(10)-a1009 [scalar field propagation];
    Belenchia et al JHEP(15)-a1411 [non-local scalar quantum field theory in flat spacetime];
    Nomaan X et al CQG(17)-a1701 [scalar field Green functions];
    Sverdlov a1805 [field defined over edges, and locality];
    Nomaan X a2105-PhD.
  @ Other fields: Sverdlov a0807 [gauge theory],
    a0808 [spinors],
    PhD(09)-a0905;
    Scargle & Simić eConf-a0912 [photon dispersion];
    Johnston PhD(10)-a1010,
    Sorkin JPCS(11)-a1107
      [quantum fields on causal set backgrounds in histories-based form];
    Sverdlov 12-a1201
      [corrections to bosonic-field Lagrangians];
    Knuth AIP(13)-a1212,
    Noldus a1305 [Fermions and the Dirac equation];
    in Alkofer et al PRD(16)-a1605 [Unruh effect];
    Glaser CQG(18)-a1802 [coupled 2D Ising model, phase structure];
    Sverdlov a1805 [electromagnetic field].
  @ d'Alembertians / wave operators: Dowker & Glaser CQG(13)-a1305,
    Glaser CQG(14)-a1311
    + CQG+(14),
    a1409-PhD;
    Aslanbeigi et al JHEP(14)-a1403 [generalized];
    Belenchia et al CQG(16)-a1510 [continuum limit];
    Belenchia CQG(16)-a1510 [universal behavior].
  @ Entanglement entropy: Sorkin & Yazdi CQG(18)-a1611;
    Belenchia et al CQG(18)-a1712 [scalar fields on causal sets];
    Surya et al a2008 [de Sitter horizons].
Other Phenomenology
  @ Cosmology: Ahmed et al PRD(04)ap/02 [unimodular relativity],
    comment Barrow PRD(07)gq/06;
    Kuznetsov a0706;
    Zuntz PRD(08)-a0711 [and the cmb];
    Ahmed & Rideout PRD(10)-a0909 [de Sitter space];
    Krioukov et al NatSR(12)-a1203 [and the structure of complex networks];
    Glaser & Surya a1410 [Hartle-Hawking wave function, 2D];
    Dowker & Zalel CR(17)-a1703 [renormalisation of dynamical parameters];
    > s.a. hartle-hawking proposal; cosmological
      constant; dark matter types.
  @ Black holes:
    Dou PhD(99)gq/01 [and entropy];
    Asato CQG(19)-a1905 [definition based on singular antichains];
    Machet & Wang a2012 [horizon entropy];
    > s.a. black-hole entropy.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 19 may 2021