|  Voronoi Tilings and Delaunay Triangulations | 
Voronoi Tessellation > s.a. tilings.
  * Idea: Given any locally finite
    set of points \(\{p_i^{~}\}\) in Euclidean space, or manifold \(M\) with Riemannian
    metric, each \(p_i^{~}\) defines a cell given by the set of all points in \(M\) which
    are closer to \(p_i^{~}\) than to any other in the set; a.k.a. Dirichlet or Thiessen
    construction in 2D, it generalizes the Wigner-Seitz construction for crystals, and
    is of interest in mineralogy, the cells representing single crystals grown from seeds
    located at the sites.
  * Generalizations: Given a locally
    finite sprikling of a manifold with Riemannian metric, one can define two families
    of Voronoi-like tilings, \(V_n^*\) and \(V_n\), of which \(V_1^{~} = V_1^*\) is the
    usual Voronoi tiling; One can also define a time-dependent type; If the nucleation
    is continuous, we get a fractal.
  * Example, S\(^2\): One can define
    a tiling either by a set of points (Delaunay or Voronoi), or by a set of great circles.
  * Complexity: The number of vertices,
    edges, faces, ... of the Voronoi diagram; The complexity for a Voronoi diagram on
    \(n\) points can be as bad as O(n2),
    but if the points are chosen independently identically distributed uniformly from
    a region in \(\mathbb R^3\) or a 2D surface, then the expected complexity falls to
    O(n).
  @ General references: Hinrichsen & Schliecker JPA(98)cm [scale-invariant fractal];
    Held CG(01) [VRONI, comput];
    Etzion & Rappoport CG(02) [of a polyhedron];
    Golin  & Na CG(03) [2D surface in 3D, complexity];
    Lucarini JSP(08),
    JSP(09)-a0805 [2D and 3D perturbed regular lattices];
    Voigt & Weis CAG-a1003 [3D];
    Aurenhammer et al 13.
  @ Random: 
    Tanemura www [2D-4D, numerical];
    Miles MB(70)-mr;
    Møller AAP(89); Møller 94;
    Grimm et al AdP(98)cm [energy spectra];
    Calka AAP(03),
    AAP(03) [distribution of number of sides];
    Hug et al AAP(04) [shape of large cells];
    Zaninetti PLA(09) [and molecule aggregation];
    Pimentel a1009 [properties of random Voronoi polyominoes];
    > s.a. statistical geometry; random tilings.
  @ Random, 1D: Khmaladze & Toronjadze AAP(01) [almost sure coverage property, non-homogeneous process].
  @ Random, 2D, flat: Hayen & Quine AAP(00) [proportion of triangles],
    AAP(02) [areas];
    Hilhorst JPA(06),
    JPA(07) [cell sidedness].
  @ Random, 3D, flat: Ferenc & Néda PhyA(07) [and 2D, size distribution].
  @ Random, flat, any dimension,: Muche & Stoyan JAProb(92) [contact and chord length distribution];
    Muche AAP(05);
    Baumstark & Last AAP(07) [properties of faces and neighbors];
    Alishahi & Sharifitabar AAP(08)
      [in high dimensionality, the variance of the volume of the typical cell tends to 0 exponentially];
    Muche AAP(10) [contact distributions];
    Yao AAP(10)
      [variances of volumes of intersections with given regions].
  @ Special manifolds:
    Isokawa AAP(00) [3D hyperbolic spaces];
    Na et al CG(02)
      [on S2].
  @ Generalizations:
    Miles & Maillardet JAProb(82) [\(V_n\)];
    Ferraro & Zaninetti PhyA(12) [2D thick Voronoi diagrams, statistics of area size];
    > s.a. galaxy distribution [weighted Delaunay and Voronoi tessellations].
  @ Related topics:
    Chiu et al AAP(96) [sectional tessellations];
    Baccelli et al AAP(00) [Markov paths];
    Goldman & Calka CRAS(01) [spectral function];
    Fekete & Meijer CG(05) [1-round Voronoi game];
    Ziherl & Kamien PRL(00)cm [entropy];
    Borovkov & Odell AAP(07) [point removal and addition process];
    Klein et al CG(09) [abstract Voronoi diagrams, axiomatic foundation];
    Muche & Nieminen JMP(12) [and Wigner surmises];
    Zhu et al PhyA(14) [effects of regularity].
  > Online resources:
    Wikipedia page.
Delaunay Triangulation > s.a. tiling
  / Gabriel Graph; simplex [Delaunay polytopes].
  * Idea: A simplicial
    complex obtained as a triangulation of (M, g) from a locally finite
    set of points pi in M;
    If M is n-dimensional, n + 1 points define a simplex iff
    the S\(^{n-1}\) through them contains no other points (in the higher-order case,
    no more than k other points – but the triangulation is not unique).
  * Duality: The dual of
    a Voronoi tessellation is a Delaunay triangulation.
  @ General references:
    Veech Top(97) [partitions];
    Lemaire & Moreau CG(00) [multi-dimensional];
    Cohen-Steiner et al CG(04) [from PL complex];
    Sohler CG(05) [fast reconstruction];
    Bose & Devroye CG(07) [2D random, stabbing number];
    Aurenhammer et al 13.
  @ In the Euclidean plane:
    Cui et al CG(11) [upper bound on stretch factor];
    Bose et al CG(11) [stretch factor];
    Aichholzer et al CG(13) [blocking Delaunay triangulations];
    Abellanas et al IJCGA(13) [shortening the shortest path between two vertices].
  @ Special manifolds:
    Leibon G&T(02) [of compact hyperbolic surfaces].
  @ Generalization: Gudmundsson et al CG(02),
    CG(05) [higher-order];
    Bandyopadhyay & Snoeyink CG(07) [almost-Delaunay simplices];
    Dereudre JSP(08) [Gibbs Delaunay tessellations of \(\mathbb R^2\)];
    in McDonald & Miller a0804-in [hybrid Voronoi-Delaunay lattice];
    Silveira & van Kreveld CG(09) [higher-order constrained];
    Bose et al CG(13) [k-Delaunay graphs, properties];
    Charbonnier et al a1701
      [in the complex plane, measure and random triangulations].
  @ Refinement: Shewchuk CG(02);
    Rineau & Yvinec CG(07);
    Spielman et al IJCGA(07) [parallel Delaunay refinement algorithm].
In Physics and Other Applications > s.a. crystals [quasicrystals];
  quantum systems [for Holevo capacity]; tilings.
  @ Percolation:
    Benjamini & Schramm CMP(98);
    Pittet JPA(99) [percolation];
    Bollobás & Riordan PTRF(06)m.PR/05 [2D, critical probability = 1/2].
  @ Dynamical models, other:
    Serrano et al JPA(02) [fluid particle models];
    Priolo et al PRB(92) [conductance];
    Priebe Frank & Hart a0712;
    > s.a. fluids.
  @ Cosmology: Doroshkevich et al A&AS(97)ap/96;
    Ramella et al A&A(01)ap [galaxy clusters];
    van de Weygaert ap/99-conf,
    ap/02-conf,
    ap/02-proc,
    a0707-proc [large-scale structure];
    Zaninetti SAJ(10)-a1012 [void statistics].
  @ Quantum gravity: Miller CQG(97)gq [Regge calculus];
    > s.a. regge calculus; semiclassical quantum gravity.
  @ Computation: Steinberg et al ApJS(15)-a1408 [Voronoi-based scheme for parallel computations];
    González A&C-a1601 [the parallel code PARAVT].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 11 jan 2017