|  Statistical Geometry | 
In General
  * Idea: Includes statistical techniques for
    studying a geometry, usually Euclidean (random sampling/sprinkling), and the study of properties
    of stochastically distributed subsets of a geometry ("stochastic geometry").
Point Process
  > s.a. Poisson Distribution; random
  process [including departures from randomness]; Sprinkling.
  * Random sprinkling: It can be
    defined if we have a volume element on a set X, as a random process;
    It corresponds to a random measure on the set.
  * Stationary: The statistical
    properties of the point process do not depend on location (what we would call
    "homogeneous").
  * Types:  Homogeneous (the number
    variance in a given region grows like the number mean), super-homogeneous (the
    number variance grows slower than the number mean), hyper-uniform (variance
    growth saturates).
  * Moments: Each moment
    corresponds to a measure on the set, like the process itself.
  * Palm distribution: Gives the
    conditional probability of point process events, given that a point is observed
    at a specific location.
  * Operations on point processes:
    Thinning (a type of "coarse-graining"), clustering (replacing points
    by clusters), superposition (union).
  * Other constructions: From a point
    distribution, one can get a (Delaunay) triangulation, and a (Voronoi) cell complex.
  @ General references: Macchi AAP(75);
    Ambartzumian 90;
    van Hameren & Kleiss NPB(98)mp,
    et al NPB(99)
      [quantum field theory methods]; Barndorff-Nielsen et al 98;
    Ramiche AAP(00) [of phase-type];
    Daley & Vere-Jones 07;
    Gabrielli et al PRE(08)-a0711 [superhomogeneous];
    Møller & Schoenberg AAP(10) [random thinning];
    Kendall & Molchanov ed-10;
    Nehring JMP(13),
    et al JMP(13) [method of cluster expansion].
  @ Poisson point process: Cowan et al AAP(03) [gamma-distributed domains];
    Bhattacharyya & Chakrabarti EJP(08) [distance to nth neighbor];
    Balister et al AAP(09) [k-nearest-neighbour model, critical constant];
    Chatterjee et al AM(10) [with allocation of measure to points];
    Davydov et al AAP(10) [peeling procedure];
    Serinaldi & Kilsby PhyA(13) [the Allan factor as an estimator of homogeneity];
    Sevilla a1310 [Poisson processes with pile-up];
    Cristina CQG(16)-a1603 [in Minkowski space, and Noldus limit];
    Last & Penrose 18;
    > s.a. Wikipedia page.
  @ Other point processes: van Lieshout 00 [Markov point processes];
    Hahn et al AAP(03) [inhomogeneous];
    in Vuletić IMRN-mp/07 [Pfaffian];
    Kuna et al AAP(11)-a0910 [realizability];
    Gupta & Iyer AAP(10) [with exponentially decaying density];
    Caron et al AAP(11) [conditional distributions];
    Jansen a1807 [Gibbs point processes, cluster expansions].
  @ Correlations:
    Kerscher A&A(99)ap/98 [correlation estimators];
    de Coninck et al PhyA(07) [correlation structure];
    Lenz & Moody CMP(09)-a0902 [correlations].
  @ Related topics: Barbour & Månsson AAP(00) [clustering of points];
    Soshnikov RMS-m.PR/00,
    AAP-m.PR/00 [determinantal random point fields];
    Valdarnini ASP-ap/01 [analysis of point distributions];
    Lytvynov RVMP(02)mp/01 [fermion and boson];
    Chiu & Molchanov AAP(03) [nearest neighbors, degree];
    Koyama & Shinomoto JPA(05) [Bayesian interpretation];
    Cowan AAP(06) [complementary theorem for n-tuples];
    Sangaletti et al JPA(07) [high-d, Cox probabilities];
    Kuna et al JSP(07) [realizability of functions as correlation functions];
    Bárány BAMS(08) [convex polytopes];
    Majumdar et al JSP(10) [properties of convex hulls];
    Møller & Berthelsen AAP(12) [superposition of spatial point processes];
    Rohrmann & Zurbriggen PRE(12) [conditional pair distributions];
    > s.a. Betti Numbers.
Other Processes and Applications > s.a. cover [coverage
  process]; e; random tiling.
  * Buffon's needle: An
    experimental method for determining the value of π, used by Georges Leclerc,
    Count de Buffon, in 1777; Rule a series of equidistant lines on a sheet of paper,
    a distance d apart; Drop a needle of length l < d on
    the paper so it falls in a random position; The probability it will cross a line
    is 2l / πd.
  @ Buffon's needle: in Gardner 81,
    127-128 & ref [use (fudged)]; {> s.a. #Lazzarini}.
  @ Related topics: Donetti & Destri JPA(04)cm/03 [scale-free random trees];
    Vickers & Brown PRS(01) [projected area and perimeter of solids];
    Roberts & Garboczi JMPS(02) [elastic properties of solids];
    Arsuaga et al JPA(07) [uniform random polygons, linking].
  > Online resources:
    Garboczi page on elastic properties of solids.
Results and Special Cases
  * 2D flat: For any non-concave
    2D figure, the average width over all orientations is exactly perimeter/π;
    For any non-concave solid, the average projected area
    on a plane over all orientations is (surface area)/4.
  * 2D curved:
  * 3D flat:
  * 3D curved:
  @ On spheres: Tu & Fischbach mp/00/JMP,
    JPA(02)mp [n dimensions, distances between random points];
    comp.graphics.algorithms page(06).
  @ On other manifolds: Parry & Fischbach JMP(00) [distances on an ellipsoid].
References > s.a. ergodic theory.
  @ General: Meijering PRR(53);
    Smith & Guttman JoM(53);
    Gilbert AMS(62);
    Miles MB(70)-mr;
    Harding & Kendall ed-74 [see intro];
    Matheron 75; Santaló 76;
    Solomon 78;
    Stoyan et al 95; 
    Beneš & Rataj 04.
  @ Related topics: Schindler CG(94) [and equivariant mappings];
    Grimmett a1110 [three theorems].
Computational Geometry > s.a. geometry.
  * Simulating binomial point processes:
  * Simulating Poisson point processes:
  @ General references: Preparata & Shamos 85;
    Ripley 87,
    in Stoyan et al 87 [statistical simulations];
    O'Rourke 98 [in C];
    Boucetta & Morvan ed-05;
    de Berg et al 08;
    Devadoss & O'Rourke 11;
    Joswig & Theobald 13 [polyhedral and algebraic methods];
    Goodman et al 17.
  @ Graphs:
    Di Battista et al CG(94) [drawing algorithms].
  @ Voronoi diagrams: Bespamyatnikh & Snoeyink CG(00) [queries with segments].
  @ Delaunay triangulations: Su & Drysdale CG(97) [algorithm comparison];
    Mücke et al CG(99) [point location, 2D and 3D];
    Lemaire & Moreau CG(00);
    Hjelle & Dæhlen 06.
  @ Greedy triangulations:
    Dickerson et al CG(97) [algorithms];
    Levcopoulos & Krznaric CG(99).
  @ Related topics:
    Mehlhorn et al CG(98) [higher-dimensional].
And Physics > s.a. causal sets;
  lattice field theory; semiclassical
  quantum gravity.
  @ References: David et al ed-96 [fluctuating geometry and statistical mechanics];
    Requardt & Roy CQG(01) [fuzzy lumps].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 31 may 2019