|  Spacetime Singularities in Quantum Gravity | 
Singularities in General
  > s.a. spacetime singularities [including modified gravity, probes]
  / quantum gravity and phenomenology.
  @ References: Konkowski & Helliwell a1302-MG13,
    Helliwell & Konkowski PRD(13) [in conformally static spacetimes];
    Czuchry et al PRD(17)-a1605 [do spikes  in the approach to singularities persist?];
    Bianchi & Haggard a1803-GRF
      [average of timelike singularities and the onset of quantum gravity];
    Casadio et al a2102 [covariant approach].
   Related
    aspects of the theory: see cosmological phenomenology in quantum gravity;
    matter phenomenology [collapse].
 Related
    aspects of the theory: see cosmological phenomenology in quantum gravity;
    matter phenomenology [collapse].
Singularity Avoidance
  > s.a. models in canonical quantum gravity; spacetime singularities.
  * History: Early work on Gowdy
    models using ADM variables was inconclusive; Work on FLRW models and black
    holes by Bojowald et al using connection variables, and by Husain &
    Winkler using metric variables, indicates that the singularity is avoided there;
    Conclusions however seem to be dependent on the approach to quantization.
  @ General references: Wheeler GRG(77);
    Padmanabhan CQG(84);
    Smith & Bergmann PRD(86);
    Joshi NCB(90);
    Hosoya CQG(95);
    Brandenberger gq/95 [cosmological];
    Hod gq/99;
    Gal'tsov gq/01-MG9 [behavior];
    Konkowski & Helliwell in(03)gq/04,
    gq/04-MGX,
    et al gq/04-MGX [vs classical];
    Mallios & Raptis gq/04 [abstract differential geometry];
    Wilson gq/05-conf;
    Raptis IJTP(06);
    Bojowald AIP(07)gq [rev];
    Haro & Elizalde JPA(09)-a0901 [in effective theory];
    Nguyen & Parwani AIP(09)-a0902,
    GRG(09)
      [non-linear correction to Wheeler-DeWitt equation];
    Arrechea et al a2010 [in semiclassical gravoty].
  @ Censorship: Hod & Piran GRG(00)gq;
    Bonanno et al CQG(17)-a1610 [turning the classical singularity into a "whimper" singularity].
  @ Near singularities:
    Joshi & Joshi CQG(88);
    Qadir & Siddiqui CQG(90)-a0801;
    Krori et al PLA(90);
    Mazumder IJTP(90) [cosmological];
    Smailagic et al ht/03 [0-point length from T-duality];
    Damour & Nicolai IJMPD(08)-a0705 [and maximally extended hyperbolic Kac-Moody algebra E10];
    Stoica AP(14)-a1205 [degenerate metrics and small-scale dimensional reduction].
  @ In different approaches:
    Callender & Weingard PLA(95) [Bohm theory];
    Kofinas & Zarikas JCAP(15)-a1506 [asymptotic safety];
    Esposito et al JPA(06)in [1-loop, euclidean];
    Czuchry et al PRD(17)-a1605 [affine quantization];
    Adéìféoba et al CQG(18)-a1808 [black-hole singularities, asymptotic safety];
    Kuntz & Casadio a1911 [higher-derivative gravity];
    > s.a. models in canonical quantum gravity;
      non-commutative gravity; string phenomenology.
  @ Related topics: Bramson PRS(93) [particle model];
    Russo PLB(94) [need non-trivial topologies];
    Xiang & Shen MPLA(05) [and gup].
In Loop Quantum Gravity > s.a. FLRW quantum cosmology;
  pilot-wave quantum theory; quantum black holes.
  @ General references: Bojowald PRL(05),
    et al PRL(05)gq [black holes];
    Goswami et al PRL(06)gq/05
      [scalar collapse, pw(06)jan];
    Ashtekar & Bojowald CQG(06)gq/05 [Schwarzschild];
    Bojowald CQG(06)gq/05 [degenerate metrics];
    Modesto AHEP(08)gq/06 [Schwarzschild],
    ht/07-proc [black holes];
    Böhmer & Vandersloot PRD(07)-a0709 [Schwarzschild spacetime];
    Cailleteau et al PRL(08)-a0808 [various models and example of non-avoidance];
    Varadarajan CQG(09)-a0812;
    Li & Zhu PRD(09)-a0812 [with tachyon field];
    Ashtekar JPCS(09)-a0812 [rev];
    Singh CQG(09)-a0901 [unified treatment of models];
    Corichi & Singh PRD(09)-a0906 [geometric perspective];
    DeBenedictis CJP(09)-a0907 [rev];
    Tanaka et al PRD(11)-a1005 [and factor ordering];
    Bojowald & Paily CQG(12)-a1206;
    Tehrani & Heydari IJTP(12)-a1207,
    AIP(12)-a1209 [charged black holes].
  @ Lqc: de Haro JCAP(12)-a1207 [the big-rip singularity survives];
    Corichi et al a1210-proc;
    Bamba et al JCAP(13)-a1211;
    Singh BASI-a1509 [rev];
    Aresté Saló et al CQG(17)-a1612;
    Struyve sRep(17)-a1703;
    Saini & Singh CQG(19)-a1812 [in modified lqc];
    Alonso-Serrano et al PRD(20)-a2001 [Bianchi I].
Specific Types of Models > s.a. 3D quantum gravity;
  bianchi I and minisuperspace models
  [other Bianchi models, singularity avoidance]; wormholes.
  @ 3D models: Pitelli & Letelier PRD(08)-a0805 [BTZ black hole];
    Unver & Gurtug PRD(10);
    Casals et al PLB(16)-a1605 [quantum dressing of a conical naked singularity].
  @ FLRW models: Falciano et al PRD(12)-a1206 [Wheeler-DeWitt approach];
    Bom et al PRD(14)-a1308 [consistent histories vs de Broglie-Bohm approaches];
    Gielen & Menéndez-Pidal a2005 [resolution depends on the clock].
  @ Other models: Calmet et al a2003 [spherically symmetric, quantum corrections].
  @ Gravitational collapse:
    Hájíček NPB(01)ht/00,
    & Kiefer IJMPD(01)gq [spherical shell];
    Modesto PRD(04)gq,
    CQG(06) [black holes];
    Husain & Winkler CQG(05)gq/04,
    CJP(06) [spherical black holes + scalar];
    Ziprick & Kunstatter PRD(09)-a0902 [massless scalar field];
    Hossenfelder et al PRD(10)-a0912 [collapse and evaporation];
    Casadio et al PLB(11)-a1008 [asymptotic safety];
    Bambi et al EPJC(14)-a1306 [spherical collapse, bounce and expansion];
    > s.a. gravitational collapse; phenomenology
      of geometry; renormalization [asymptotic safety]; modified
      electrodynamics.
   Pre-Big-Bang
    cosmology: see cmb anisotropy; loop quantum cosmology;
    string phenomenology.
 Pre-Big-Bang
    cosmology: see cmb anisotropy; loop quantum cosmology;
    string phenomenology.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 28 feb 2021