|  Quantum Cosmology Formalism and Techniques | 
In General
  > s.a. BRST theory; geometrodynamics;
  histories-based quantum theory; loop quantum cosmology;
  regge calculus.
  @ Path-integral approach:
    Narlikar & Padmanabhan PRP(83);
    Qin & Ma PRD(12)-a1110 [coherent-state path integrals, minisuperspace].
  @ Formulations: Calzetta & Hu PRD(89) [phase-space formulation];
    Khosravi et al GRG(10)-a0909 [canonical and deformed phase space].
  @ WKB: Calzetta & González PRD(95)gq/94,
    Cornish & Shellard PRL(98)gq/97 [and chaos];
    Embacher gq/96 [interpretation].
  @ Unitarity:
    Lemos PRD(90) [and self-adjointness];
    Linden & Perry NPB(91);
    Barvinsky PRP(93);
    Massar & Parentani PRD(99)gq/98.
  @ Normalizability: Sarangi & Tye ht/05 [role of environment and decoherence].
  @ Decoherence:
    Halliwell PRD(89);
    Padmanabhan PRD(89);
    Habib & Laflamme PRD(90) [Wigner function, WKB, coarse-graining];
    Kiefer CQG(91) [scalar in de Sitter space];
    Laflamme & Louko PRD(91);
    Whelan PRD(98)gq/96,
    gq/97-TX18 [conformally flat];
    Castagnino IJTP(99)gq/00;
    Calzetta CQG(12)-a1205 [chaos and the WKB approximation];
    > s.a. semiclassical general relativity
      and semiclassical quantum gravity.
  @ Conformal rotation: Hartle & Schleich in(87);
    Schleich PRD(89) [Bianchi I].
  @ Measure on superspace: Barvinsky NPB(89);
    Gibbons & Turok PRD(08)ht/06;
    Page JCAP(11)-a1103 [FLRW models with a scalar field and Λ > 0].
  @ Time: Feinberg & Peleg PRD(95)gq [and Wheeler-DeWitt operator];
    Thibeault & Simeone IJMPD(07) [and two-component formalism];
    Husain & Pawłowski CQG(11)-a1108,
    a1306-MG13
      [with pressureless dust and additional matter, physical Hamiltonian].
  @ Information-theoretic approaches: Parwani a1203-proc;
    Bao et al a1702.
  @ Other topics: Horowitz PRD(85);
    Page IJTP(86) [size of universe];
    D'Eath & Halliwell PRD(87) [fermions];
    Fang & Mo PLB(87);
    Hu in(88)gq/95 [condensed-matter ideas];
    Vachaspati PLB(89);
    Farhi et al NPB(90);
    McGuigan PRD(90);
    Conradi & Zeh PLA(91);
    Calzetta & Kandus PRD(93) [observer dependence];
    Laflamme CQG(93) [time-symmetric];
    Halliwell & Ortiz PRD(93)gq/92  [composition laws];
    Mena CQG(94) [reality conditions];
    Halliwell PRD(01)gq/00 [with detectors];
    Asselmeyer-Maluga & Król MPLA(13)-a1309
      [S3 × \(\mathbb R\) with exotic smoothness structure];
    Mielczarek a1404-GRF [Big Bang as a critical point].
  > Other: see Baby Universes;
    boundary conditions; canonical quantum gravity [including factor ordering];
    cosmological constant; effective quantum field theory;
    entropy;  numerical relativity;
    spacetime topology.
Third Quantization > s.a. cosmological
  constant problem; multiverse.
  * Idea: A "second quantized"
    theory of ψ, considered as a field on superspace.
  * Criticism: The wave function ψ
    is not measurable in any sense, so this appears not to make sense [@ Unruh & Wald
    PRD(89)].
  @ References: McGuigan PRD(88);
    Fischler et al NPB(89);
    Giddings & Strominger NPB(89);
    Hosoya PRD(89);
    Strominger & Ellis PTRS(89);
    Cline NPB(90);
    Peleg CQG(91);
    Pimentel & Mora PLA(01)gq/00 [Brans-Dicke model];
    Robles-Pérez & González-Díaz PRD(10)-a1005;
    Robles-Pérez JPCS(13)-a1211;
    Kim a1212-proc
      [FLRW cosmology, with N minimal massless fields];
    Faizal PLB(13)-a1304 [fourth quantization];
    Kim a1304-Univ [with a massive inflaton];
    Faizal IJMPA(15)-a1503 [deformed theory].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 26 feb 2017