|  Renormalization of Gauge Theories | 
In General > s.a. history of particle physics;
  lattice gauge theories; quantum gauge theories.
  * Coupling constants: Robinson
    & Wilczek have calculated the contribution of graviton exchange to the
    running of gauge couplings at lowest non-trivial order in perturbation theory;
    The results indicate that the gravitational correction renders all gauge
    couplings asymptotically free.
  @ General references: 't Hooft  NPB(71) [spontaneously broken, massive];
    't Hooft & Veltman NPB(72);
    Balaban CMP(84),
    CMP(88) [lattice];
    Grigore ht/99,
    JPA(00),
    ht/00,
    JPA(04) [Epstein-Glaser, causal approach];
    Fischer & Gies JHEP(04)hp [propagators];
    Faddeev TMP(06) [charge and dimensional transmutation];
    van Suijlekom CMP(07)ht/06,
    a0801-in [Hopf algebra approach];
    Tomboulis & Velytsky PRL(07) [Monte-Carlo-improved action];
    Seijas PhD(07)-a0706 [differential renormalization];
    Tomboulis MPLA(09) [free energies and order parameters];
    Faddeev IJMPA(16)-a1509-conf;
    Romatschke a1910 [3D, beta function].
  @ BRST formalism:
    Duetsch & Fredenhagen ht/04-en;
    Asnafi et al a1811 [BRS- invariant RG flows].
  @ Yang-Mills theory: 't Hooft NPB(71) [massless];
    Bochicchio a1701 [large-N limit, ultraviolet finiteness].
  @ Gravitational corrections to coupling constants:
    Robinson & Wilczek PRL(06);
    Toms IJMPD(08);
    Robinson & Wilczek PRL(10)
    + news ns(10)nov;
    Folkerts et al PLB(12)-a1101 [no contribution];
    Ellis & Mavromatos PLB(12);
    Felipe et al MPLA(13)-a1206 [for QED, ambiguities];
    > s.a. renormalization [coupling constants].
  @ Gauge-invariant: Morris JHEP(00)ht,
    IJMPA(01)ht-conf;
    Rosten PhD(05)ht,
    IJMPA(06) [manifestly];
    Morris & Rosten PRD(06)ht/05 [2-loop beta function];
    Arnone et al EPJC(07)ht/05 [generalized];
    Arnone et al ht/06-proc [SU(N)];
    > s.a. yang-mills theories.
  @ In curved spacetime: Lavrov & Shapiro PRD(10)-a0911 [gauge- and diffeomorphism-invariant].
Maxwell Theory, QED > s.a. fine-structure
  constant; Hopf Algebra; QED
  variations; vacuum.
  * Coupling constant: For
    α = e2/\(\hbar\)c,
    in general, to one-loop level,
α−1(μ) = α−1(MX) + (b/2π) log(MX / μ) ;
    this presents the Landau Pole problem; One finds that
    α(E = 0) ≅ 1/137, and α(E =
    91 GeV = MZ) ≅ 1/128.
  @ Early papers: Feynman PR(48),
    PR(48);
    Tomonaga PR(48);
    Schwinger PR(48),
    PR(49);
    Dyson PR(49).
  @ General references: Su et al JPG(99)ht/05 [mass-dependent subtraction];
    Gies & Jaeckel PRL(04)hp;
    Prokhorenko & Volovich PSIM(04)ht/06 [Hopf algebra approach];
    Fujita ht/06;
    Suslov a0911-conf [beta-function, strong-coupling asymptotics];
    Ardalan et al PS(13)-a1108 [gauge-invariant cutoff];
    Kolomeisky a1309 [optimal number of terms];
    Masood PRI(14)-a1407 [near decoupling temperatures];
    Jora & Schechter a1407 [new, semi-perturbative renormalization scheme];
    Dimock a1712 [3D, ultraviolet stability];
    Gies & Ziebell a2005 [asymptotic safety].
  @ Lorentz-violating  quantum electrodynamics:
    Anselmi & Taiuti PRD(10)-a0912;
    Santos & Sobreiro BJP(16)-a1502 [and CPT-violating].
Other Types of Theories and Generalizations
  > s.a. electroweak theory; topological field theories.
  * QCD: The theory is
    renormalizable in 4D, superrenormalizable in lower dimensions; The
    large-N S-matrix is only renormalizable, not UV finite.
  @ QCD: Wilson PRD(71);
    Kadanoff RMP(77);
    Peng PLB(06) [coupling constant];
    Morris & Rosten JPA(06)ht [gauge-invariant];
    Andrasi & Taylor AP(09)-a0704 [Hamiltonian, Coulomb gauge];
    Fried et al AP(15)-a1412 [finite, non-perturbative];
    Bochicchio a1701 [large-N limit];
    > s.a. QCD [asymptotic freedom]; QCD phenomenology [confinement].
  @ QCD, running coupling constant: Shirkov & Solovtsov PRL(97) [analytic model];
    Gaddah ht/02 [and observables];
    Fritzsch MPLA(06) [t-dependence of QCD scale].
  @ Standard model: Hossenfelder PRD(04)hp [running constants and minimal length];
    Actis et al NPB(07) [2-loop];
    Haba et a NPB(14) [neutrino sector].
  @ Higher-dimensional: Gies PRD(03)ht;
    Álvarez & Faedo JHEP(06)ht [6D QED].
  @ Supersymmetric:
    Piguet ht/96;
    Weinberg PRL(98)ht [non-renormalization theorem];
    Stelle AIP(01)ht/02 [supergravity and super-Yang-Mills];
    Berenstein & Rey PRD(03) [N = 2];
    Guralnik et al IJMPA(05)ht/04-conf [N = 2 and 4 super-Yang-Mills, non-renormalization theorems];
    Cherchiglia et al EPJC(16)-a1508 [calculation of the beta function];
    > s.a. specific theories.
  @ Non-commutative theories:
    Blaschke et al FdP(10)-a0908 [review, problem];
    van Suijlekom CMP(12)-a1104 [Yang-Mills spectral action].
  @ Other types: Shi & Shrock PRD(15)-a1411 [chiral gauge theories];
    Junqueira et al a1807 [topological Yang-Mills  theories];
> s.a. other theories.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 22 may 2020