Fine-Structure Constant |
In General > s.a. variation of constants;
bounds on fine-structure constant variation.
* History and value: The
constant, introduced by Sommerfeld in 1916 in his study of the hydrogen
atom, αQED:=
e2/\(\hbar\)c
= 7.297 352 568(24) × 10−3
= 1/137.03599976... ≈ 1/137; 2006 experimental value
α−1
= 137.035 999 710 (96); 2008 experimental value 137.035 999 084 (51).
* Running, renormalization:
At about 100 GeV (LEP energies), the value is 1/128.9; It should keep growing
at higher energies, and diverge at a very high but finite energy
(> Landau-Pole Problem; renormalization).
@ General articles: Lubkin PT(71)aug,
letter PT(71)nov,
Adawi et al PT(90)dec;
Gross PT(89)dec;
Nasseri PLB(05),
PLB(06)ht/05 [corrections from gup];
Seidel NCB(06) [statistical approach];
Davies IJTP(08)-a0708 [and gravitational thermodynamics];
Gogberashvili & Kanatchikov a1009 [in a Machian universe];
Mainland & Mulligan a1705 [theoretical calculation].
@ Measurement: Gabrielse et al PRL(06),
news pn(06)jun
and pw(06)aug [best];
Hanneke et al PRL(08) [best];
Maciejko et al PRL(10) [using a topological insulator];
Bouchendira et al AdP(13)-a1309 [state of the art].
@ Running, renormalization:
Levine et al PRL(97) [evidence];
Tobar Met-hp/03 [and flux quanta];
Toms PRL(08)-a0809 [quantum gravity corrections];
Eichhorn et al PLB(18)-a1711 [quantum-gravity predictions, asymptotic safety].
@ Anthropic arguments: Eaves PhyA(16)-a1412 [anthropic fine-tuning];
Sandora JCAP(16)-a1604 [anthropic requirements for habitable planets].
@ Related topics: Jentschura PRA(14)-a1404
[gravitational fine-structure constant αG
= Gm1m2/\(\hbar\)c].
@ Variation, reviews: Fiorentini & Ricci ESO(03)ap/02;
Murphy et al eConf-ap/02;
Martins ap/04-proc;
Scóccola PhD(09)-a0906 [and electron mass].
Variation, Theory > s.a. cosmological
constant / cosmology in modified gravity;
dark matter; FLRW
models; higher-order gravity.
* History: Dirac (1937) and Landau (1955)
proposed that α could vary in time.
* Idea: Variations can be driven
by changes in the relationship between electric and magnetic field energies.
@ General references:
Bekenstein PRD(82) [framework];
Karshenboim GRG(06) [search methods];
Barrow AdP(10)-a0912-proc [rev].
@ And quintessence: Huey et al PRD(02)ap/01 [and cmb];
Anchordoqui & Goldberg PRD(03)hp;
Lee et al IJMPD(05)ap/03 [bound];
Bento et al PRD(04)ap [2-field];
Marra & Rosati JCAP(05)ap;
Avelino et al JCAP(06);
Lee MPLA(07)ap
[and mp/me];
Bento & González PLB(09).
@ And dark matter: Olive & Pospelov PRD(02)hp/01 [+ Λ];
Barnett et al MNRAS(04)ap [dark matter oscillations];
Stadnik & Flambaum PRL(15)-a1503.
@ And spectroscopy: Dzuba & al PRL(99)phy/98,
PRA(99)phy/98;
Bekenstein ap/03.
@ And the cosmological constant: Kühne MPLA(99) [α-dot implies Λ];
Fujii ASS(03)gq/02-conf.
@ Other: Barrow & Magueijo PLB(98)ap;
Bergström et al PRD(99)ap [nucleosynthesis];
Banks et al PRL(02) [and quantum field theory];
Damour ASS(03)gq/02-conf,
Gregori hp/02 [string theory];
Barrow & Mota CQG(03)gq/02 [perturbations];
Rañada EPL(03)ap/02 [as quantum field theory vacuum effect];
Bekenstein PRD(02)gq [and equivalence principle];
Rafelski hp/02 [non-universal gravity];
Tobar Met-hp/03 [electromagnetic constants];
Steinhardt PRD(05)hp/03 [constraints];
Belinchón gq/04;
Kimberly & Magueijo PLB(04)hp/03 [and the standard model];
Kozlov et al PRA(04)ap [and variation of isotope abundances];
Campanelli et al MPLA(07)ap/05 [and domain walls];
Fujii PLB(08)-a0709 [scalar-tensor theory, and acceleration];
Anchordoqui et al PLB(08) [phase transition at z = 0.5];
Bekenstein & Schiffer PRD(09)-a0906 [and black holes];
MacGibbon a1003-MG12 [and generalized second law];
Barrow & Lip PRD(12)-a1110 [generalized theory];
Sloan CQG(14)-a1307 [in lqc].
@ Spatial variation: Barrow et al PRD(02)ap;
Mota & Barrow MNRAS(04)ap/03;
Parkinson et al PLB(04)ap/03 [mapping the dark energy];
Sigurdson et al PRD(03)ap [and cmb];
Mota PhD(03)ap/04 [BSDM theory];
Olive et al PRD(11)-a1011 [and domain walls];
Barrow & Magueijo MPLA(15)-a1412.
@ And variation of c:
Barrow & Magueijo ApJL(00)ap/99;
Davies et al Nat(02)aug,
refuted by Duff ht/02 (refuted
by Moffat ht/02),
Flambaum ap/02,
Carlip & Vaidya Nat(03)ht/02;
Magueijo et al PLB(02)ap;
Peres IJMPD(03)qp/02,
gq/02 [theory];
Alfonso-Faus gq/02/EJP [no].
@ No variation, alternative interpretations: Sumner ap/05 [and no cosmological constant!];
Bandiera & Corbelli A&A(05)ap [mimicked by correlations?];
Chang et al EPJC(12)-a1106 [spacetime anisotropy].
> Related topics: see black-hole thermodynamics;
inflationary phenomenology; modified electrodynamics
[non-linear]; particles [electron mass].
Variation, Consequences
> s.a. modified lorentz symmetry.
* Idea: It would imply a
non-expansion contribution to redshift, the splitting between atomic energy
levels in quasar spectra, and the existence of an ultralight scalar particle;
But probably not to a violation of the weak equivalence principle; It would
affect stellar nucleosynthesis, a 4% increase in α would
effectively shut down C production in stars.
@ General references: Berman & Trevisan gq/02;
Dvali & Zaldarriaga PRL(02) [5th force and 5essence];
Langacker et al PLB(02) [variations in ΛQCD];
Carlip PRD(03)gq/02 [black holes and quantum gravity];
Tobar & Hartnett PRD(03)gq [proposed experiment];
Bertolami & Monteiro PRD(05) [and primordial B fields];
Flambaum PRA(06),
Flambaum & Kozlov PRL(07),
Beloy et al PRA(10) [diatomic molecules].
@ And black-hole thermodynamics: Das & Kunstatter CQG(03)ht/02;
Fairbairn & Tytgat JHEP(03)ht/02 [Reissner-Nordström black-hole entropy].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 9 nov 2019