Quantum Mechanics  

In General > s.a. formulations; foundations [including ontology and other philosophical aspects]; interpretations; logic; quantum systems.
* Regime: Situations where length scales are small with respect to energy scales, and a small number of states are occupied.
* Features: Formally, the most important concept introduced with respect to classical mechanics is that of probability amplitudes, with their particular combination laws; These yield amplitudes for processes, described in terms of unique (classical) trajectories; Physically, the distinguishing features are complementarity (and the related uncertainty principle), entanglement (related to non-locality), and the measurement problem.
* 2012: Quantum information, quantum foundations and quantum gravity motivate the idea of considering quantum mechanics as one of a class of possible theories; A lot of current work seeks to understand the special features and properties which single out quantum mechanics, and the possibilities for alternative theories; Some of the formalisms which have been used in this context are operational theories, categorical and topos-theory-based quantum mechanics, anhomomorphic logic; > s.a. modified quantum theory.
> Features: see complementarity; entanglement; quantum effects [including applications]; uncertainty; Wave-Particle Duality.
> Specific concepts: see complex structure; information; momentum; observables; Phase; schrödinger equation; symmetries; Trajectories.
> Related topics: see angular momentum; euclidean geometry; lie algebra; logic; mind; Quantum Channel; spacetime; Supersymmetry.

blue bullet Areas: see experiments; foundations; history; measurement; particle effects; semiclassical quantum theory; technology.

General Aspects and References > s.a. diffraction [Kapitza-Dirac]; probability; Process; quantum states; waves.
@ Original papers: Heisenberg ZP(25); Born & Jordan ZP(25); Born et al ZP(26); Dirac PRS(26); Van der Waerden ed-67.
@ General references: Houston AJP(37)apr; Gudder & Boyce IJTP(70); Jauch in(71); Komar in(71); Giles in(75); Loinger RNC(87); Amann et al ed-88; Drieschner et al IJTP(88); Von Baeyer ThSc(91)jan; Foschini qp/98 [logical structure]; Bub SHPMP(00)qp/99; Arndt et al qp/05-conf, comm Mohrhoff qp/05; Nikolić FP(07)qp/06 [myths and facts]; Rieffel qp/07-conf [from information pov]; Aerts in(09)-a0811 [quantum structures]; Schmelzer FP(09)-a0901 [Hamiltonian operator alone not enough]; Brukner a0905; Strocchi EPJP(12)-a1112; Cabello a1212 [Specker's fundamental principle]; Goyal PRA(14)-a1403 [from Feynman's rules]; Haag a1602-post [fundamental aspects]; Khrennikov FP(17)-a1704 [the present situation]; Svensson a1803 [claimed inconsistencies].
@ And foundations of physics: Josephson FP(88)-a1110 [limitations]; Benioff PRA(99)qp/98; Neumaier qp/00; Iten et al a1807 [using neural networks to extract physical concepts]; Drossel a1908-talk [limitations, from condensed matter and statistical physics]; > s.a. foundations of quantum theory.

Books and Lecture Notes > s.a. physics teaching.
@ Texts: Bohm 51; Dirac 58 [comment Drago a2101]; Dicke & Wittke 60; Fermi 61; Messiah 62; Blokhintsev 64; Dirac 64; Kramers 64; Gottfried 66; Flügge 75; Martin 81; Prigovecki 81; Sokolov, Ternov & Zhukovskii 84; Pauling & Wilson 85; Umezawa & Vitiello 85; Das & Melissinos 86; Wu 86; Galindo & Pascual 90; Greenhow 90; Lévy-Leblond & Balibar 90; van Fraassen 91; Park 92; Peebles 92; Bohm 93; Thankappan 93; Greiner 94; McGervey 95; Gottfried & Yan 03; Liboff 03; Ghatak & Lokanathan 04; Basdevant & Dalibard 05; Basdevant 07; Schwabl 07; Auletta et al 09; Mathur & Singh 09; Afnan 11 [ebook]; Das 12; Le Bellac 12; McIntyre 12 [r AJP(12)jul]; Fayyazuddin & Riazuddin 13; Sakurai & Napolitano 20.
@ Special emphasis: Paul 08 [quantum effects]; Razavy 10 [Heisenberg approach]; Müller-Kirsten 12 [path integrals]; Gitterman 12 [modern, r CP(12)]; Salasnich 14 [light and matter]; Commins 14 [experimentalist's approach]; Chang & Ge 17 [recent developments]; Coecke & Kissinger 17 [diagrammatic]; D'Ariano et al 17 [information theory]; Komech a1907-ln [for mathematicians].
@ Conceptual: Jauch 68; Mayants 84; Krips 88; d'Espagnat 89, 95; Ballentine 90; Peres 94; Bitbol 96; Home 97; Omnès 99 [II]; Mohrhoff 11; Baaquie 13; Ballentine 14; Bricmont 16 [II]; Dhand et al a1806 [II, for non-science majors]; Dhand et al a1806 [simple experiments]; Becker 18 [I]; Greenstein 19.
@ Problems: ter Haar ed-75; Squires 95; Lim 98; Capri 02; Tamvakis 05; Basdevant & Dalibard 06; Galitski et al 13 [r CP(13), PT(14)jun].
@ Applications: Osborn 88; Singh 96; Landshoff et al 98; Fitts 99 [chemistry]; Harrison 00; Robinett 06 [II]; Swanson 06; Desai 09 [field theory; r CP(11)]; Schumacher & Westmoreland 10 [information, processes]; Le Bellac 14; Bagarello 19 [social sciences, etc]; Basdevant & Dalibard 19 [modern physics]; Petersson et al a2012-ln [applied mathematics]; > s.a. electricity [semiconductors].
@ I: Hoffmann 59; Bohr 61; Bergmann 62; Guillemin 68; Hey & Walters 87; Rohrlich 87; Albert 93; Gilmore 94; Zukav 94; Styer 00; Al-Khalili 03; Bruce 04; Kakalios 10 [r CP(11)#6, not good]; Lederman & Hill 10; Scarani et al 10 [interesting simple systems]; Ford 12; Whitaker 12; Griffiths 13; Ball 18 and Becker 18 [r sn(19)jan]; > s.a. physics.
@ II: Eisberg & Resnick 74; French 78; Sudbery 86 [particle physics]; Chester 87; Smith 91 [historical]; Białynicki-Birula et al 92; McMurry 94; Hannabuss 97; Levin 01; Capri 02; Gasiorowicz 03; Englert 06 [II/III]; Rae 08; Gaasbeek a1007; Wilcox 12 [and particles, many illustrations]; Townsend 12; Longair 13 [historical]; Binney & Skinner 14; Susskind & Friedman 14; Griffiths & Schroeter 18; Shoshany a1803-ln [high-school level]; Reynolds a1809.
@ III: Dyson 51 & qp/06 [advanced]; Schiff 68; Lipkin 73 [selected topics]; Cohen-Tannoudji et al 77; Coleman ln(94)-a2011; Shankar 94; Merzbacher 98; Rosu phy/98-ln; Lindenbaum 99; Newton 02; Cohen qp/06-ln [II/III]; Gyftopoulos a0709 [current understanding]; Schwabl 08 [advanced]; Konishi & Paffuti 09; Dyson & Derbes 11; Barletta a1201-ln; Scheck 13; Adler a1401-conf [the future of quantum mechanics]; Weinberg 15; Picasso 16; Dick 16 [materials and photons].
@ III, operational / qualitative: Migdal 77; Busch et al 95; Olshanii 13.
@ III, mathematical: Von Neumann 55; Mackey 63; Nikodym 66; Hannabuss 97 [coherent states, group representations]; Kalmbach 98; Steeb 98; Naudts mp/00 [from symmetry]; Komech mp/05-ln; Villaseñor AIP(08)-a0804 [Segal's approach]; Govaerts a0812-proc; Strocchi 08; Bohm et al RPMP(09) [rev]; Dimock 11; Heinosaari & Ziman 12 [r CP(12)]; Gustafson & Sigal 12; Dereziński & Gérard 13 [r CP(14)#2].
@ Abstract: Mielnik CMP(68); Piron 76; Ludwig 83-85, 85-87.
@ And group theory: Weyl 50; Mackey 68; Simms 68; Aldaya & Azcárraga FdP(87); Mirman 95; Lam 09 [symmetries and geometry].
> Online resources: see Lee Smolin talk at PI, 2019-04-17.

Quantum Mechanics: The dreams stuff is made of.


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 26 jan 2021