Canonical Quantum Gravity: Models  

Spherical Symmetry > s.a. FLRW models; holography in gravitation; loop quantum gravity; quantum black holes; spherical symmetry.
@ General references: Loustó & Mazzitelli IJMPA(91); Greensite IJMPA(91); Carlip & Teitelboim CQG(95)gq [black holes, opening angle at the horizon]; Hollmann gq/96 [as sigma-model]; Kenmoku G&C(99); Brahma PRD(15)-a1411 [densitized triad variables]; Kagan a1512 [anomaly freedom]; Casadio et al GRG(17)-a1605 [global gravitational radius operator].
@ Symmetry reduction in lqg: Alesci & Cianfrani PRD(13)-a1301 [inhomogeneous Bianchi I]; Bodendorfer & Zipfel CQG(16)-a1512; Hanusch CMP(16)-a1307, a1601-PhD [invariant connections and symmetry reduction]; Bodendorfer et al PLB(15)-a1410; Ashtekar IJMPD(16)-a1605 [overview, and lqc]; Bilski et al a1707 [Quantum Reduced Loop Gravity, isotropic cosmology]; Alesci et al PRD(18)-a1807 [evolving spherically symmetric black hole initial data sets]; Bilski & Marcianò PRD(20)-a1905 [Quantum Reduced Loop Gravity, critical analysis]; Kelly et al PRD(20)-a2006.
@ Connection representation: Thiemann & Kastrup NPB(93)gq; Thiemann in(94)gq/99, in(94)gq/99 [+ Maxwell field]; Thiemann NPB(95); Bojowald CQG(04)gq [states and operators]; Bojowald & Swiderski CQG(04)gq [volume operator], CQG(06)gq/05 [Hamiltonian constraint]; Bojowald PRL(05)gq [absence of singularities]; Campiglia et al CQG(07)gq, AIP(08)-a0712; Gambini & Pullin PRL(08)-a0805 [Schwarzschild black holes], ASL(09)-a0807 [diffeomorphism symmetry]; Kunstatter et al PRD(10)-a0910 [Einstein-Rosen wormhole throat, polymer]; Borja et al CQG(12)-a1201 [with a massless scalar field]; Chiou et al a1212 [and maximally extended Schwarzschild spacetime]; Corichi & Singh CQG(16)-a1506 [Schwarzschild interior]; Mäkelä PRD-a1506 [thermodynamics]; Bojowald et al PRD(15)-a1507 [abelianization and covariance]; Gambini et al a2006 [improved dynamics].
@ With matter shells: Berezin et al PRD(98)gq/97 [dust shells, black holes and wormholes]; Hájíček NPB(01)ht/00 [null shell, group quantization]; Ambrus & Hájíček PRD(05)gq [null dust]; Gambini & Pullin CQG(15)-a1408, Campiglia et al CQG(16)-a1601 [null shells in a lqg spacetime]; Kiefer a1512-MG14 [spherical dust shell]; Ziprick et al PRD(16)-a1609 [polymer quantization].
@ With a scalar field: Pinheiro & Khanna ht/00; Husain & Winkler PRD(05)gq [black hole]; Álvarez et al PRL(12)-a1111.
@ Collapse: Hájíček et al PRD(92) [as Coulomb problem]; Hájíček CMP(92), NPPS(00)gq/99; Hawkins PRD(94); Myers GRG(97)gq [pure/mixed states]; Varadarajan PRD(98)gq; Vaz et al PRD(01) [with dust]; Vaz & Witten PRD(01) [black holes from dust]; Corichi et al PRD(02)gq/01 [dust shell]; Hájíček LNP(03)gq/02; Husain & Winkler PRD(06)gq/06 [spherical]; Vachaspati CQG(09)-a0711 [Schrödinger picture]; Husain in(07)-a0801 [rev]; Modesto IJTP(08) [minisuperspace, lqg methods]; Husain & Terno PRD(10)-a0903 [with a scalar field]; Greenwood PhD(10)-a1001; Kreienbuehl et al CQG(12)-a1011 [modified general relativity]; Vaz & Witten GRG(11)-a1111 [spherical, dust]; Tavakoli et al IJMPD(14)-a1303 [loop quantum dynamics]; Saini & Stojković PRD(14)-a1401 [non-local but non-singular physics near the singularity]; Vaz NPB(15)-a1407 [dust, no black hole]; > s.a. 3D quantum gravity; gravitational collapse [semiclassical]; singularities in quantum gravity.
@ With other matter: Thiemann IJMPD(94)gq/99, NPB(95)gq/99 [lqg + electromagnetism + cosmological constant]; Gambini et al CQG(09)-a0906 [uniform discretization + master constraint], GRG(11)-a1105 [scalar propagator and Lorentz invariance]; > s.a. semiclassical gravity.

Other Reductions to Fewer Degrees of Freedom > s.a. loop quantum gravity [special solutions].
* Midisuperspace models: A theory with infinitely many degrees of freedom (a field theory) obtained by reducing the superspace of a parent gravitational theory to a proper subset of metrics, usually through a symmetry reduction; Examples are spherical symmetry and cylindrical symmetry.
* Minisuperspace models: A canonical gravitational theory in which the number of degrees of freedom has been reduced to a finite number.
@ Models: Torre IJTP(99)gq/98-in [general theory]; Beetle ATMP(98)gq [toroidal]; Alexandrov et al CQG(98) [SU(2)-invariant]; Bojowald & Kastrup CQG(00)ht/99 [symmetry reduction]; Brodbeck & Zagermann CQG(00)gq/99 [in self-dual representation]; Glinka ONCP(09)-a0809 [one-dimensional, classical limit]; Christodoulakis et al CQG(10)-a0901 [geometries admitting maximally-symmetric 2D surfaces]; Alesci & Cianfrani a1506-PoS, Bilski et al PRD(15)-a1506 [quantum reduced]; Gerhardt a1608 [AdS black holes]; Gambini et al CQG(20)-a2001 [axisymmetric]; > s.a. minisuperspace; quantum black holes; quantum cosmology.
@ Midisuperspace models: Husain & Pullin MPLA(90) [one Killing vector field, connection and loop representations]; Barbero & Villaseñor LRR(10)-a1010 [rev]; Adelman et al CQG(15)-a1401 [Minkowski space]; > s.a. gowdy spacetimes.
@ Plane waves: Berger & Matsuki PRD(89); Ashtekar & Pierri JMP(96)gq; Neville PRD(97), PRD(97) [connection representation]; Mena & Montejo PRD(98)gq, PRD(00)gq/99; Barbero et al PRD(04)gq [Fock spaces]; Adelman et al CQG(15)-a1401 [volume and length fluctuations].
@ Plane waves, lqg techniques: Hinterleitner & Major PRD(11)-a1006, CQG(12)-a1106; Neville a1305 [semiclassical limit]; Hinterleitner a1703.
@ Cylindrical waves: Kuchař PRD(71); Mena PRD(96)gq/95; Korotkin & Samtleben PRL(98)gq/97; Cruz et al PLB(98)gq; Varadarajan CQG(00)gq/99; Niedermaier & Samtleben NPB(00)ht/99; Angulo & Mena IJMPD(00)gq; Barbero et al PRD(03)gq [choice of time]; Cho & Varadarajan CQG(06); Varadarajan IJMPD(06).
@ Cylindrical + matter: Barbero et al PRL(05)gq, PRD(06)gq [massless scalar].
@ Timelike symmetries: Korotkin & Nicolai PRL(95)ht/94 [stationary axisymmetric]; Ma PRD(02)gq/01 [static → 2+1 Euclidean gravity + Klein-Gordon field].

Other Types of Metrics > s.a. connection representation; quantum black holes; quantum geometry.
@ Perturbations: Vaz et al PRD(03) [around a black hole, thermal bath].
@ Degenerate metrics: Bojowald CQG(06)gq/05 [lqg].
@ Fractional dimensions: Tibrewala PRD(16)-a1503 [spherically symmetric].


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 11 jan 2021