Canonical Quantum Gravity: Models |
Spherical Symmetry > s.a. FLRW models;
holography in gravitation; loop quantum gravity;
quantum black holes; spherical symmetry.
@ General references:
Loustó & Mazzitelli IJMPA(91);
Greensite IJMPA(91);
Carlip & Teitelboim CQG(95)gq [black holes, opening angle at the horizon];
Hollmann gq/96 [as sigma-model];
Kenmoku G&C(99);
Brahma PRD(15)-a1411 [densitized triad variables];
Kagan a1512 [anomaly freedom];
Casadio et al GRG(17)-a1605 [global gravitational radius operator].
@ Symmetry reduction in lqg: Alesci & Cianfrani PRD(13)-a1301 [inhomogeneous Bianchi I];
Bodendorfer & Zipfel CQG(16)-a1512;
Hanusch CMP(16)-a1307,
a1601-PhD [invariant connections and symmetry reduction];
Bodendorfer et al PLB(15)-a1410;
Ashtekar IJMPD(16)-a1605 [overview, and lqc];
Bilski et al a1707
[Quantum Reduced Loop Gravity, isotropic cosmology];
Alesci et al PRD(18)-a1807 [evolving spherically symmetric black hole initial data sets];
Bilski & Marcianò PRD(20)-a1905 [Quantum Reduced Loop Gravity, critical analysis];
Kelly et al PRD(20)-a2006.
@ Connection representation: Thiemann & Kastrup NPB(93)gq;
Thiemann in(94)gq/99,
in(94)gq/99 [+ Maxwell field];
Thiemann NPB(95);
Bojowald CQG(04)gq [states and operators];
Bojowald & Swiderski CQG(04)gq [volume operator],
CQG(06)gq/05 [Hamiltonian constraint];
Bojowald PRL(05)gq [absence of singularities];
Campiglia et al CQG(07)gq,
AIP(08)-a0712;
Gambini & Pullin PRL(08)-a0805 [Schwarzschild black holes],
ASL(09)-a0807 [diffeomorphism symmetry];
Kunstatter et al PRD(10)-a0910 [Einstein-Rosen wormhole throat, polymer];
Borja et al CQG(12)-a1201 [with a massless scalar field];
Chiou et al a1212
[and maximally extended Schwarzschild spacetime];
Corichi & Singh CQG(16)-a1506 [Schwarzschild interior];
Mäkelä PRD-a1506 [thermodynamics];
Bojowald et al PRD(15)-a1507 [abelianization and covariance];
Gambini et al a2006 [improved dynamics].
@ With matter shells: Berezin et al PRD(98)gq/97 [dust shells, black holes and wormholes];
Hájíček NPB(01)ht/00 [null shell, group quantization];
Ambrus & Hájíček PRD(05)gq [null dust];
Gambini & Pullin CQG(15)-a1408,
Campiglia et al CQG(16)-a1601 [null shells in a lqg spacetime];
Kiefer a1512-MG14 [spherical dust shell];
Ziprick et al PRD(16)-a1609 [polymer quantization].
@ With a scalar field:
Pinheiro & Khanna ht/00;
Husain & Winkler PRD(05)gq [black hole];
Álvarez et al PRL(12)-a1111.
@ Collapse: Hájíček et al PRD(92) [as Coulomb problem];
Hájíček CMP(92),
NPPS(00)gq/99;
Hawkins PRD(94);
Myers GRG(97)gq [pure/mixed states];
Varadarajan PRD(98)gq;
Vaz et al PRD(01) [with dust];
Vaz & Witten PRD(01) [black holes from dust];
Corichi et al PRD(02)gq/01 [dust shell];
Hájíček LNP(03)gq/02;
Husain & Winkler PRD(06)gq/06 [spherical];
Vachaspati CQG(09)-a0711 [Schrödinger picture];
Husain in(07)-a0801 [rev];
Modesto IJTP(08) [minisuperspace, lqg methods];
Husain & Terno PRD(10)-a0903 [with a scalar field];
Greenwood PhD(10)-a1001;
Kreienbuehl et al CQG(12)-a1011 [modified general relativity];
Vaz & Witten GRG(11)-a1111 [spherical, dust];
Tavakoli et al IJMPD(14)-a1303 [loop quantum dynamics];
Saini & Stojković PRD(14)-a1401 [non-local but non-singular physics near the singularity];
Vaz NPB(15)-a1407 [dust, no black hole];
> s.a. 3D quantum gravity; gravitational collapse
[semiclassical]; singularities in quantum gravity.
@ With other matter: Thiemann IJMPD(94)gq/99,
NPB(95)gq/99 [lqg + electromagnetism + cosmological constant];
Gambini et al CQG(09)-a0906 [uniform discretization + master constraint],
GRG(11)-a1105 [scalar propagator and Lorentz invariance];
> s.a. semiclassical gravity.
Other Reductions to Fewer Degrees of Freedom
> s.a. loop quantum gravity [special solutions].
* Midisuperspace models:
A theory with infinitely many degrees of freedom (a field theory) obtained
by reducing the superspace of a parent gravitational theory to a proper
subset of metrics, usually through a symmetry reduction; Examples are
spherical symmetry and cylindrical symmetry.
* Minisuperspace models: A
canonical gravitational theory in which the number of degrees of freedom
has been reduced to a finite number.
@ Models: Torre IJTP(99)gq/98-in [general theory];
Beetle ATMP(98)gq [toroidal];
Alexandrov et al CQG(98) [SU(2)-invariant];
Bojowald & Kastrup CQG(00)ht/99 [symmetry reduction];
Brodbeck & Zagermann CQG(00)gq/99 [in self-dual representation];
Glinka ONCP(09)-a0809 [one-dimensional, classical limit];
Christodoulakis et al CQG(10)-a0901 [geometries admitting maximally-symmetric 2D surfaces];
Alesci & Cianfrani a1506-PoS,
Bilski et al PRD(15)-a1506 [quantum reduced];
Gerhardt a1608 [AdS black holes];
Gambini et al CQG(20)-a2001 [axisymmetric];
> s.a. minisuperspace; quantum black holes;
quantum cosmology.
@ Midisuperspace models: Husain & Pullin MPLA(90) [one Killing vector field, connection and loop representations];
Barbero & Villaseñor LRR(10)-a1010 [rev];
Adelman et al CQG(15)-a1401 [Minkowski space];
> s.a. gowdy spacetimes.
@ Plane waves:
Berger & Matsuki PRD(89);
Ashtekar & Pierri JMP(96)gq;
Neville PRD(97),
PRD(97) [connection representation];
Mena & Montejo PRD(98)gq,
PRD(00)gq/99;
Barbero et al PRD(04)gq [Fock spaces];
Adelman et al CQG(15)-a1401 [volume and length fluctuations].
@ Plane waves, lqg techniques:
Hinterleitner & Major PRD(11)-a1006,
CQG(12)-a1106;
Neville a1305 [semiclassical limit];
Hinterleitner a1703.
@ Cylindrical waves: Kuchař PRD(71);
Mena PRD(96)gq/95;
Korotkin & Samtleben PRL(98)gq/97;
Cruz et al PLB(98)gq;
Varadarajan CQG(00)gq/99;
Niedermaier & Samtleben NPB(00)ht/99;
Angulo & Mena IJMPD(00)gq;
Barbero et al PRD(03)gq [choice of time];
Cho & Varadarajan CQG(06);
Varadarajan IJMPD(06).
@ Cylindrical + matter: Barbero et al PRL(05)gq,
PRD(06)gq [massless scalar].
@ Timelike symmetries: Korotkin & Nicolai PRL(95)ht/94 [stationary axisymmetric];
Ma PRD(02)gq/01 [static → 2+1 Euclidean gravity + Klein-Gordon field].
Other Types of Metrics > s.a. connection representation;
quantum black holes; quantum geometry.
@ Perturbations: Vaz et al PRD(03) [around a black hole, thermal bath].
@ Degenerate metrics: Bojowald CQG(06)gq/05 [lqg].
@ Fractional dimensions: Tibrewala PRD(16)-a1503 [spherically symmetric].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 11 jan 2021