Modified Approaches to Quantum Gravity |
In General
> s.a. BF theory; newton-cartan theory;
phenomenology; theories of gravitation.
* Possibilities: Unitarity, renormalizability,
and relativistic invariance are usually considered essential properties for any fundamental
quantum field theory; In Hořava gravity unitarity and renormalizability are retained,
while Lorentz invariance must emerge only as an approximate symmetry at low energies.
@ Strong-coupling limit:
Henneaux et al PLB(82);
Pilati PRD(82);
PRD(83);
Francisco & Pilati PRD(85);
Rovelli PRD(87);
Husain CQG(88);
Kakas CQG(89) [matter];
Gamboa PRL(95) [2D];
Maeda & Sakamoto PRD(96)ht [expansion];
Sakamoto PRD(09)-a0905 [renormalized, and z = 2 Lifshitz point];
> s.a. modified general relativity [classical].
@ Weak-coupling limit: Varadarajan a1904 [lqg quantization, quantum propagation].
@ Scalar-tensor theory:
Pimentel & Mora gq/00 [Bergmann-Wagoner theory];
Zhang & Ma PRD(11)-a1107,
JPCS(12)-a1111,
FrPh(13)-a1211 [loop quantization];
Steinwachs & van der Wild CQG(18)-a1712 [Wheeler–DeWitt equation, quantum gravity corrections];
> s.a. brans-dicke theory; no-boundary wave
function; renormalization; scalar-tensor
theories [conformal frames].
@ Modified dynamics: Smolin CQG(92) [G → 0];
Broda et al PLB(07) [abelian theory].
@ Hořava-lifshitz gravity:
Orlando & Reffert CQG(09)-a0905;
Shu & Wu a0906 [stochastic quantization];
Visser a0912-conf [power-counting];
Giribet et al JHEP(10)-a1006 [semiclassical];
Briscese et al FP(12)-a1205;
D'Odorico et al PRL(14)-a1406 [asymptotic freedom];
Li et al PRD(14)-a1408,
PRD(16)-a1511 [1+1];
Barvinsky et al PRD(16)-a1512 [projectable theory, perturbative renormalizability];
Glaser et al PRD(16)-a1605 [CDT approach];
Bellorín & Restuccia PRD(16)-a1606 [at the kinetic-conformal point];
Steinwachs a2004 [rev];
> s.a. 3D quantum gravity; dynamical triangulations;
quantum cosmological models.
@ Other theories of gravity: Pagani & Percacci CQG(15)-a1506 [with torsion and non-metricity];
Álvarez & González-Martín JCAP(17)-a1610 [Weyl gravity];
> s.a. bimetric gravity; classical gravity
and theories [incuding vector]; conformal gravity;
higher-order gravity; massive gravity;
non-local theories; quantum cosmology [varying constants];
teleparallel gravity [lqc approach]; types of quantum
field theories [ultralocal].
Linearized Gravity > s.a. perturbations in general relativity
and quantum cosmology / approaches to canonical
quantum gravity and covariant quantum gravity.
@ Deformation quantization: Quevedo & Tafoya GRG(05)gq/04;
García-Compeán & Turrubiates IJMPA(11)-a1109 [ground state Wigner functional and graviton propagator].
@ Other approaches: Bronstein PZS(36),
translation GRG(12);
Ashtekar et al PRD(91) [lqg];
Grigore CQG(00)ht/99;
Shojai & Shojai PS(03)gq [Bohmian approach];
Bomstad & Klauder CQG(06)gq [projection operator];
Contreras et al a1612 [monoidal representation].
@ Ground state: Kuchař JMP(70) [canonical];
Hartle PRD(84),
Hartle & Schleich in(87)-a2004 [Euclidean path integral].
@ Gravitons: Varadarajan PRD(02)gq [loop and Fock space];
Speziale JHEP(06)gq/05 [2-point function from spin foam, 3D model];
Skagerstam et al CQG(19)-a1806 [spontaneous graviton emission and/or absorption];
> s.a. quantum field theory in curved spacetime [graviton].
@ Stability: Moncrief GRG(79) [linearization instabilities]; Kuntz & da Rocha a1903 [instability due to runaway modes].
@ Related topics: Atkins & Calmet PLB(11)-a1003 [coupled to matter, S-matrix unitarity];
Magueijo & Benincasa PRL(11)-a1010 [chiral vacuum fluctuations];
Fewster & Hunt RVMP(13)-a1203 [with a cosmological constant];
> s.a. gravitomagnetism; quantum regge calculus.
Approaches Based on Different Frameworks > s.a. approaches
to quantum gravity [including categorical]; quantum spacetime.
* Possibilities: Modify the
underlying structure, such as (i) Twistors; (ii) Algebraic approaches, quantum
groups, non-commutative geometry; (iii) Finkelstein and other fundamentally
quantum approaches (plexars, quantum topology); (iv) Posets, as finite spatial
topologies, or as causal sets; (v) Fundamentally discrete approaches.
@ General references: DeWitt & Molina-París MPLA(98)ht [from the space of histories];
Delfino et al JHEP(15)-a1210 [pure-connection formulation, Feynman rules].
@ Bohm / pilot-wave theory: Shtanov PRD(96)gq/95;
Goldstein & Teufel in(01)qp/99;
Shojai PRD(99)gq,
& Golshani IJMPA(98),
IJMPA(98)gq/99,
& Shojai CQG(04)gq/03;
Santini PhD(00)gq [canonical quantum gravity];
Pinto-Neto & Santini GRG(02);
Kenmoku et al CQG(02) [3D spherical];
Shojai & Shojai proc(05)gq/04 [lqg];
Shojai et al IJMPA(05)gq [Einstein universe];
Carroll TMP(07) [fluctuations and entropy];
Sverdlov a1010;
Vassallo & Esfeld FP(14)-a1308 [discrete];
Dürr & Struyve CQG(20)-a2003 [quantum Einstein equations];
> s.a. canonical quantum gravity.
@ And other hidden variables: 't Hooft CQG(99)gq [information dissipation].
@ And spectral geometry:
Esposito 98-ht/97,
ht/97-conf,
CM(05)ht/03-proc [Euclidean];
Booß-Bavnbek et al Sigma(07)-a0708 [rev];
Kempf & Martin PRL(08)-a0708 [information theory and cutoffs];
Aasen et al PRL(13)-a1212 [2D case].
@ Causality-based: Schorn CQG(97),
CQG(97);
Rainer IJTP(00)gq/97,
CQG(00)gq/99 [algebraic];
Christensen & Crane JMP(05) [causal sites];
Markes & Hardy JPCS(11)-a0910 [and entropy];
> s.a. causal sets; causality
in quantum theory ["causaloids"].
@ Relational: Corichi et al MPLA(02)gq;
Dreyer gq/04-GRF;
Raptis IJTP(07) ['third quantization'];
Dreyer in(06)gq,
PoS-a0710 [internal relativity];
Anderson CQG(09)-a0809.
@ Deformed: Finkelstein LMP(96);
Antonsen gq/97;
Gavrilik eConf-gq/99 [quantum algebras];
Vacaru IUJP-a0801
[Lagrange-Finsler variables and Fedosov quantization];
de Vegvar EPJC(17)-a1605 [Hopf algebra methods on commutative manifolds];
> s.a. loop representation; modified versions of general relativity.
@ Related topics: Ghosh ht/02 [use all signatures];
Siino ht/06 [algebraic];
Finkelstein IJTP(08)gq/06 [homotopy approach];
Raptis IJTP(06) [Glafka meeting, iconoclastic approaches];
Alfaro et al CQG(11) [two-symmetric-tensor delta gravity];
Gegenberg & Husain CQG(13)-a1210 [solvable model];
Etesi a1712 [von Neumann algebra of a 4-manifold];
Singh a1901 [action for an asymmetric metric
tensor using non-commutative geometry, string theory, and trace dynamics];
> s.a. FLRW quantum cosmology.
Other approaches:
see clifford algebra; non-commutative gravity;
Non-Symmetric Gravity; types of symplectic structures.
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 21 feb 2021