|  Modified Approaches to Quantum Gravity | 
In General
  > s.a. BF theory; newton-cartan theory;
  phenomenology; theories of gravitation.
  * Possibilities: Unitarity, renormalizability,
    and relativistic invariance are usually considered essential properties for any fundamental
    quantum field theory; In  Hořava gravity unitarity and renormalizability are retained,
    while Lorentz invariance must emerge only as an approximate symmetry at low energies.
  @ Strong-coupling limit:
    Henneaux et al PLB(82);
    Pilati PRD(82);
    PRD(83);
    Francisco & Pilati PRD(85);
    Rovelli PRD(87);
    Husain CQG(88);
    Kakas CQG(89) [matter];
    Gamboa PRL(95) [2D];
    Maeda & Sakamoto PRD(96)ht [expansion];
    Sakamoto PRD(09)-a0905 [renormalized, and z = 2 Lifshitz point];
    > s.a. modified general relativity [classical].
  @ Weak-coupling limit: Varadarajan a1904 [lqg quantization, quantum propagation].
  @ Scalar-tensor theory:
    Pimentel & Mora gq/00 [Bergmann-Wagoner theory];
    Zhang & Ma PRD(11)-a1107,
    JPCS(12)-a1111,
    FrPh(13)-a1211 [loop quantization];
    Steinwachs & van der Wild  CQG(18)-a1712 [Wheeler–DeWitt equation, quantum gravity corrections];
    > s.a. brans-dicke theory; no-boundary wave
      function; renormalization; scalar-tensor
      theories [conformal frames].
  @ Modified dynamics: Smolin CQG(92) [G → 0];
    Broda et al PLB(07) [abelian theory].
  @ Hořava-lifshitz gravity:
    Orlando & Reffert CQG(09)-a0905;
    Shu & Wu a0906 [stochastic quantization];
    Visser a0912-conf [power-counting];
    Giribet et al JHEP(10)-a1006 [semiclassical];
    Briscese et al FP(12)-a1205;
    D'Odorico et al PRL(14)-a1406 [asymptotic freedom];
    Li et al PRD(14)-a1408,
    PRD(16)-a1511 [1+1];
    Barvinsky et al PRD(16)-a1512 [projectable theory, perturbative renormalizability];
    Glaser et al PRD(16)-a1605 [CDT approach];
    Bellorín & Restuccia PRD(16)-a1606 [at the kinetic-conformal point];
    Steinwachs a2004 [rev];
    > s.a. 3D quantum gravity; dynamical triangulations;
      quantum cosmological models.
  @ Other theories of gravity: Pagani & Percacci CQG(15)-a1506 [with torsion and non-metricity];
    Álvarez & González-Martín JCAP(17)-a1610 [Weyl gravity];
    > s.a. bimetric gravity; classical gravity
      and theories [incuding vector]; conformal gravity;
      higher-order gravity; massive gravity;
      non-local theories; quantum cosmology [varying constants];
      teleparallel gravity [lqc approach]; types of quantum
      field theories [ultralocal].
Linearized Gravity > s.a. perturbations in general relativity
  and quantum cosmology / approaches to canonical
  quantum gravity and covariant quantum gravity.
  @ Deformation quantization: Quevedo & Tafoya GRG(05)gq/04;
    García-Compeán & Turrubiates IJMPA(11)-a1109 [ground state Wigner functional and graviton propagator].
  @ Other approaches: Bronstein PZS(36),
    translation GRG(12);
    Ashtekar et al PRD(91) [lqg];
    Grigore CQG(00)ht/99;
    Shojai & Shojai PS(03)gq [Bohmian approach];
    Bomstad & Klauder CQG(06)gq [projection operator];
    Contreras et al a1612 [monoidal representation].
  @ Ground state: Kuchař JMP(70) [canonical];
    Hartle PRD(84),
    Hartle & Schleich in(87)-a2004 [Euclidean path integral].
  @ Gravitons: Varadarajan PRD(02)gq [loop and Fock space];
    Speziale JHEP(06)gq/05 [2-point function from spin foam, 3D model];
    Skagerstam et al CQG(19)-a1806 [spontaneous graviton emission and/or absorption];
    > s.a. quantum field theory in curved spacetime [graviton].
  @ Stability: Moncrief GRG(79) [linearization instabilities]; Kuntz & da Rocha a1903 [instability due to runaway modes].
  @ Related topics: Atkins & Calmet PLB(11)-a1003 [coupled to matter, S-matrix unitarity];
    Magueijo & Benincasa PRL(11)-a1010 [chiral vacuum fluctuations];
    Fewster & Hunt RVMP(13)-a1203 [with a cosmological constant];
    > s.a. gravitomagnetism; quantum regge calculus.
Approaches Based on Different Frameworks > s.a. approaches
  to quantum gravity [including categorical]; quantum spacetime.
  * Possibilities: Modify the
    underlying structure, such as (i) Twistors; (ii) Algebraic approaches, quantum
    groups, non-commutative geometry; (iii) Finkelstein and other fundamentally
    quantum approaches (plexars, quantum topology); (iv) Posets, as finite spatial
    topologies, or as causal sets; (v) Fundamentally discrete approaches.
  @ General references: DeWitt & Molina-París MPLA(98)ht [from the space of histories];
    Delfino et al JHEP(15)-a1210 [pure-connection formulation, Feynman rules].
  @ Bohm / pilot-wave theory: Shtanov PRD(96)gq/95;
    Goldstein & Teufel in(01)qp/99;
    Shojai PRD(99)gq,
    & Golshani IJMPA(98),
    IJMPA(98)gq/99,
    & Shojai CQG(04)gq/03;
    Santini PhD(00)gq [canonical quantum gravity];
    Pinto-Neto & Santini GRG(02);
    Kenmoku et al CQG(02) [3D spherical];
    Shojai & Shojai proc(05)gq/04 [lqg];
    Shojai et al IJMPA(05)gq [Einstein universe];
    Carroll TMP(07) [fluctuations and entropy];
    Sverdlov a1010;
    Vassallo & Esfeld FP(14)-a1308 [discrete];
    Dürr & Struyve CQG(20)-a2003 [quantum Einstein equations];
    > s.a. canonical quantum gravity.
  @ And other hidden variables: 't Hooft CQG(99)gq [information dissipation].
  @ And spectral geometry:
    Esposito 98-ht/97,
    ht/97-conf,
    CM(05)ht/03-proc [Euclidean];
    Booß-Bavnbek et al Sigma(07)-a0708 [rev];
    Kempf & Martin PRL(08)-a0708 [information theory and cutoffs];
    Aasen et al PRL(13)-a1212 [2D case].
  @ Causality-based: Schorn CQG(97),
    CQG(97);
    Rainer IJTP(00)gq/97,
    CQG(00)gq/99 [algebraic];
    Christensen & Crane JMP(05) [causal sites];
    Markes & Hardy JPCS(11)-a0910 [and entropy];
    > s.a. causal sets; causality
      in quantum theory ["causaloids"].
  @ Relational: Corichi et al MPLA(02)gq;
    Dreyer gq/04-GRF;
    Raptis IJTP(07) ['third quantization'];
    Dreyer in(06)gq,
    PoS-a0710 [internal relativity];
    Anderson CQG(09)-a0809.
  @ Deformed: Finkelstein LMP(96);
    Antonsen gq/97;
    Gavrilik eConf-gq/99 [quantum algebras];
    Vacaru IUJP-a0801
      [Lagrange-Finsler variables and Fedosov quantization];
    de Vegvar EPJC(17)-a1605 [Hopf algebra methods on commutative manifolds];
    > s.a. loop representation; modified versions of general relativity.
  @ Related topics: Ghosh ht/02 [use all signatures];
    Siino ht/06 [algebraic];
    Finkelstein IJTP(08)gq/06 [homotopy approach];
    Raptis IJTP(06) [Glafka meeting, iconoclastic approaches];
    Alfaro et al CQG(11) [two-symmetric-tensor delta gravity];
    Gegenberg & Husain CQG(13)-a1210 [solvable model];
    Etesi a1712 [von Neumann algebra of a 4-manifold];
    Singh a1901 [action for an asymmetric metric
      tensor using non-commutative geometry, string theory, and trace dynamics];
    > s.a. FLRW quantum cosmology.
   Other approaches:
    see clifford algebra; non-commutative gravity;
    Non-Symmetric Gravity; types of symplectic structures.
 Other approaches:
    see clifford algebra; non-commutative gravity;
    Non-Symmetric Gravity; types of symplectic structures.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 21 feb 2021