Lorentz Group |
In General
> s.a. Racah Coefficients; tests of lorentz invariance.
* For 4D spacetime:
The 6D Lie group O(3,1) of transformations on \(\mathbb R^4\) (or
\(\mathbb C^4\) for the complex Lorentz group) which leaves the
form η = diag(−1,1,1,1) invariant:
L:= {Λ ∈ GL(4, \(\mathbb R\)) | ΛT η Λ = η} .
* Connected components: The real Lorentz group has 4 connected components,
L+u:=
{Λ ∈ L | det Λ = 1,
Λ00 > 0} L+d:= {Λ ∈ L | det Λ = 1, Λ00 < 0} |
L−u:=
{Λ ∈ L | det Λ = −1,
Λ00 > 0} L−d:= {Λ ∈ L | det Λ = −1, Λ00 < 0} ; |
The subgroup of proper Lorentz transformations L+
= SO(3,1); Examples of specific transformations are P ∈
L−u,
PT ∈ L+d,
T ∈ L−d.
* Restricted Lorentz group:
The restricted, or proper orthochronous Lorentz group is
L+u;
Its double covering is SL(2, \(\mathbb C\)) (or SL(2, \(\mathbb C\)) ×
SL(2, \(\mathbb C\)), in the complex case); Any element Λ ∈
L+u
can be decomposed as
Λ = Λ1 Λ2 Λ3 , with Λ1, Λ3 rotations and Λ2 a boost along the z direction.
@ General references: Oblak a1508-ln
[and conformal transformations of the sphere, undergraduate-level].
@ Properties of the group: Ungar AJP(92)sep;
Schmidt IJTP(98)gq/95 [non-compactness].
@ Properties of transformations: Urbantke FPL(03)mp/02 [as hyperplane/line reflections];
Jadczyk & Szulga EJLA(16)-a1611.
@ Lie algebra: Coll & San José Martínez GRG(02)gq/01 [generators];
Hanson GRG(12)-a1103 [orthogonal decomposition];
> s.a. orthogonal lie groups.
@ Related topics: Singh AJP(86)feb;
Toller mp/03 [homogeneous spaces];
Girelli & Livine gq/04 [as deformed Galileo group];
Simon et al IJTP(06)qp [in terms of Hamilton's "turns"];
Kerner a0901
[from \(\mathbb Z\)3-graded cubic algebra].
> Online resources: see
Wikipedia page.
Representations
> s.a. 4-spinors; CPT theorem; poincaré
group [inhomogeneous Lorentz group]; special-relativistic kinematics.
* Result: Every irreducible representation of
SL(2, \(\mathbb C\)) is equivalent to D(j/2, k/2)
= {Aam},
with j, k ∈ \(\mathbb N\), which acts on tensors
Ta... bc'... d' = T(a... b)(c'... d') by Ta... bc'... d' \(\mapsto\) Aam Abn A*c'p' A*d'q' Tm... np'... q' .
* Relationships: The irr's of SU(2) are equivalent
to D(j/2, 0)
= D(j/2).
* Unitary representations: It has no
finite-dimensional uirr's; Hence, we must use infinite-dimensional representations.
* Real D-dimensional:
Jab = ηbc xa (∂/∂xc) − ηac xb (∂/∂xc) .
@ General references: Naimark 64;
Gopala Rao et al JPA(95),
JPA(95),
JPA(95).
@ Unitary: Dirac PRS(45);
Mukunda & Simon JMP(95);
Kubieniec JMP(05) [uirr, proper orthochronous],
JMP(05) [supplementary series]
@ Transformations of specific quantities: Jordan et al PRA(06)qp/05 [spin density matrices];
> s.a. thermal radiation; electromagnetic-field dynamics.
@ Special types of representations: Fredsted JMP(01) [exponentiated spin-1/2 and 1 representations];
Mashhoon AdP(09)-a0908 [non-local, and accelerated observers];
Hanson a1201 [exponential of the spin representation];
Atehortua et al a1210 [non-linear, and DSR];
Sellaroli a1509 [infinite-dimensional];
Varlamov IJTP(16)-a1602
[interlocking representations and classification of relativistic wave equations];
Kocik a1604 [Cromlech, menhirs and celestial sphere].
@ Related topics:
Mukunda & Radhakrishnan JMP(73) [3D];
Manogue & Schray JMP(93)ht [10D, in terms of octonions];
Varlamov mp/02,
JPA(06)mp/05 [and relativistic spherical functions];
Newman & Price AJP(10)jan [complex formulation];
Karplyuk & Zhmudskyy a1807 [hypercomplex representation].
Variations > s.a. modified lorentz group and symmetry violations.
@ Discrete version: Lorente & Kramer JPA(99) [on hypercubic lattice];
Levi et al PRD(04)ht/03 [Lorentz invariance];
Tarakanov a1301 [discrete subgroups];
Arrighi et al NJP(14) [for quantum walks and quantum cellular automata].
@ Emergence in a discrete setting: Livine & Oriti JHEP(04)gq;
Sengupta CQG(14)
+ Bojowald CQG+(14) [in a 2D model for lqg];
Mlodinow & Brun a1802 [wave equations from quantum walks on regular lattices].
Lorentz Invariance in Physics > s.a. poincaré group.
* Derivation: The structure of
the Lorentz transformations follows from the absence of privileged inertial
reference frames and the group structure of the transformations; It is not
necessary to assume the existence of an invariant speed.
@ General references: in Will 93, ch2 [evidence];
Rodrigues & Sharif FP(01) [local, in general relativity];
Wolf et al gq/03-proc [tests];
Lämmerzahl AdP(05);
Afshordi a1511 [in high-energy physics];
Nicolis a2010 [signs in Newtonian mechanics].
@ Origin of Lorentz symmetry: Froggatt & Nielsen hp/02-proc [derivation in quantum field theory];
Korbel ht/04 [quantum];
Albrecht & Iglesias PRD(15)-a1003 [from a random Hamiltonian];
Shanahan FP(14)-a1401 [and matter waves];
Höhn & Müller NJP(16)-a1412 [operational approach, from quantum communication];
Raasakka PRD(17)-a1705
[transformations between local thermal states in Local Quantum Physics];
Chappell et al a1501 [3D Clifford geometric algebra].
@ As an emergent symmetry: Bednik et al JHEP(13)-a1305 [in strongly coupled theories];
Khoury et al CQG(14)-a1305,
IJMPD(14)-a1405-GRF;
Kharuk & Sibiryakov TMP(16)-a1505 [and chiral fermions];
Roy et al JHEP(16)-a1510 [near fermionic quantum critical points];
Arkani-Hamed & Benincasa a1811 [from the scattering facet of cosmological polytopes];
Volovik a2011;
> s.a. Einstein-Aether Theory.
@ For specific systems:
Kim cm/96-proc [in condensed matter];
Chen PRL(14)-a1404 [chiral theory, spin-1/2 particle with definite helicity];
Bisio et al FP(17)-a1707 [from a quantum walk];
> s.a. cellular automaton; electricity;
relativistic quantum mechanics.
@ Related topics: Chkareuli et al PRL(01)hp [and origin of gauge symmetries];
Peres & Terno JMO(02)qp/01 [of open systems];
Szabó FPL(04) [not fundamental];
Rodrigues et al IJGMP(05)mp [and ambiguity of curvature/torsion];
Casadio PLB(13)-a1303 [Lorentz invariance in a quantum field theory with Planck-scale cutoff];
Shanahan FP(14) [and wave properties of matter];
Pelissetto & Testa AJP(15)apr-a1504 [without the invariant speed assumption, elementary proof];
Bosso & Das IJMPD(19)-a1812 [invariant mass and length scales].
> Related topics: see affine connections;
cellular automaton; finsler geometry;
hamiltonian systems; history of relativistic physics;
lorentz-group phenomenology; probabilities;
quantum-gravity phenomenology; special relativity.
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 8 may 2021