The Casimir Effect in Different Types of Systems  

In Different Geometries > s.a. casimir effect [boundary conditions, single boundary].
@ Spherical: Nesterenko & Pirozhenko PRD(98)ht/97; Bowers & Hagen PRD(99)ht/98; Esposito et al ht/98; Hagen PRD(00)ht/99; Cognola et al JPA(01)ht/99; Høye et al PRE(01)qp/00 [dielectrics]; Teo PRD(12)-a1112 [two spheres at small separations]; Özcan IJMPA(12)-a1207 [concentric spheres]; Garrett et al PRL(18) [two spheres, measurement].
@ Cylinders: Gosdzinsky & Romeo PLB(98)ht [infinite]; Mazzitelli et al PRA(03)qp/02 [concentric]; Dalvit et al PRA(06) [eccentric]; Lombardo et al PRD(08)-a0808 [numerical]; Teo PRD(11)-a1106 [cylinder + plate, at finite temperature]; Teo EPL(11)-a1108 [concentric, at finite temperature], PRD(11)-a1108 [correction to the proximity-force approximation].
@ Other geometry: Brevik & Lygren AP(96) [conducting wedge]; Emig et al PRL(01) [shape dependence]; Boyer AJP(03)oct-qp/02 [1D model]; Büscher & Emig PRA(04) [periodic]; Hoodbhoy JPA(05)qp/04 [single plate in external V]; Ahmedov & Duru JMP(05) [conical]; Kenneth & Klich PRL(06)qp [reflection]; Ahmadi & Nouri-Zonoz NPB(06) [flat spaces of non-trivial topology]; Schaden ht/06 [shape dependence, semiclassical]; Pirozhenko & Lambrecht PRA(08)-a0801 [finite-thickness slabs].
@ Arbitrary geometry: Balian & Duplantier qp/04-proc; Emig et al PRL(07) [compact objects]; Rodríguez et al PRA(07)-a0705 [numerical, arbitrary materials]; Reid et al PRL(09)-a0904; Teo IJMPA(12)-a1205 [mode-summation approach]; Rodríguez-López et al IJMPcs(12)-a1207 [based on stochastic quantization]; Straley & Kolomeisky PRA(14)-a1403 [examples]; Bennett PRA(14)-a1404 [canonical treatment].

For Different Materials and Fields > s.a. neutrinos; Unparticles.
@ Dielectrics: Molina-París & Visser PRD(97)ht; Ford PRA(98)qp [sphere and wall]; Helfer & Lang JPA(99)ht/98 [half space]; Brevik & Pettersen AP(01)qp [wedge]; Sopova & Ford PRD(05)qp [between half-spaces, finite reflectivity]; Babington a0911-proc [between spheres]; Mostepanenko a2104 [Lifshitz theory].
@ Other materials: Scandurra ht/03 [non-ideal conductor]; Noguez & Román-Velázquez PRB(04)qp/03 [different materials, and geometry]; Bimonte et al PRL(05) [superconducting film and measurement of variation]; Benassi & Calandra JPA(07)-a0808, JPA(08)-a0808, EPL(08)-a0808 [thin metal films]; Gambassi JPCS(09)-a0812 [critical Casimir force in thin films]; Ravndal a0903 [continuous medium]; Klimchitskaya et al RMP(09) [real materials].
@ For fermion fields: Santos & Tort qp/02; Queiroz et al AP(05)ht/04 [with thermofield dynamics]; Kolomeisky et al PRA(08)-a0706 [1D free fermion gas].
@ Other fields: Ostrowski FPL(05) [tachyons]; Mobassem a1403 [massive scalar field]; Stokes & Bennett AP(15)-a1411 [fields with arbitrary spin]; Costantino & Fichet JHEP(20)-a2003 [neutrinos]; > s.a. klein-gordon fields [fractional].
@ Related topics: Ostrowski APPB(06)ht/05 [with an external magnetic field]; Solomon a1209 [effect of point-splitting regularization]; Fosco et al a1609 [isolated vs grounded conductors].

In Curved Spacetime, Gravitation and Cosmology > s.a. equivalence principle; kaluza-klein phenomenology.
* Idea: It has been invoked as a stabilization mechanism for the internal Kaluza-Klein dimensions, and used as a force between defects and branes; It may occur in cosmology if the cosmological constant originates from zero-point energy; It has been shown to obey the equivalence principle.
* In a quantum spacetime: Using loop quantum gravity results, all calculations are finite and one recovers the usual results without the need of regularization or renormalization.
@ General references: Borman & Antonsen ht/96-proc; Scardicchio PRD(05)ht [codimension > 1]; Sorge CQG(05) [gravitational correction], CQG(09) [(no) gravitomagnetic first-order correction]; Bezerra et al PRD(11)-a1110 [thermal Casimir effect for neutrino and electromagnetic fields in FLRW spacetimes]; Nazari EPJC(15)-a1510 [in a general weak gravitational field].
@ With cosmological constant: Elizalde ht/03-conf; Gazzola et al AP(09) [massive scalar]; Kotanjyan et al PS(15)-a1505; > s.a. cosmological acceleration.
@ In R × S3: Brevik et al AP(02)ht; Elizalde & Tort MPLA(04)ht/03 [massive scalar].
@ In theories with a minimal length: Harbach & Hossenfelder PLB(06)ht/05, ht/05-proc; Nouicer JPA(05)ht; Frassino & Panella PRD(12)-a1112, Blasone et al IJMPD-a1912 [based on a GUP].
@ Other quantum-gravity-motivated: Casadio et al PRD(07)-a0704 [non-commutative spacetime]; Gambini et al CQG(15)-a1410 [in a quantum spacetime]; > s.a. non-commutative physics.
@ Related topics: Kong & Ravndal qp/97, PRL(97)qp [with boundary, regularized]; Alnes et al PRD(06)qp [with extra dimensions]; Khabibullin et al CQG(06) [wormhole]; Nouri-Zonoz PRD(10)-a0904 [in weak-field Kerr spacetime, threading formulation]; Quach PRL(15)-a1502 [in superconductors]; Buoninfante et al a1811 [quadratic theories of gravity]; Bimonte a1902 [between superconductors]; > s.a. dynamical casimir effect; cosmological constant.

Other Situations > s.a. quantum systems [H atom between plates]; sonoluminescence.
@ Acoustic / thermal analog: Larraza & Denardo PLA(98); Larraza AJP(99)nov; Ford & Svaiter JPCS(09)-a0811 [potentially observable aspects]; Sushkov et al nPhys(11) + news pw(11)feb [thermal, observation]; Jaskula et al PRL(12) + Steinhauer Phy(12) + news pw(12)dec [dynamical Casimir effect in a Bose-Einstein condensate].
@ Other classical analogs: Boersma AJP(96)may [ships at sea]; news pw(08)jan [critical Casimir effect].
@ Related topics: Svetovoy & Lokhanin MPLA(00)qp [in Au, detailed]; Philbin et al AP(10)-a0909 [Casimir stress in an inhomogeneous medium]; Karabali a1111-proc [contribution due to diffraction from edges and holes]; Sitenko MPLA-a1506 [with quantized massive matter fields]; news pw(18)dec [Casimir torque].


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 5 apr 2021