The Casimir Effect in Different Types of Systems |
In Different Geometries
> s.a. casimir effect [boundary conditions, single boundary].
@ Spherical: Nesterenko & Pirozhenko PRD(98)ht/97;
Bowers & Hagen PRD(99)ht/98;
Esposito et al ht/98;
Hagen PRD(00)ht/99;
Cognola et al JPA(01)ht/99;
Høye et al PRE(01)qp/00 [dielectrics];
Teo PRD(12)-a1112 [two spheres at small separations];
Özcan IJMPA(12)-a1207 [concentric spheres];
Garrett et al PRL(18) [two spheres, measurement].
@ Cylinders: Gosdzinsky & Romeo PLB(98)ht [infinite];
Mazzitelli et al PRA(03)qp/02 [concentric];
Dalvit et al PRA(06) [eccentric];
Lombardo et al PRD(08)-a0808 [numerical];
Teo PRD(11)-a1106 [cylinder + plate, at finite temperature];
Teo EPL(11)-a1108 [concentric, at finite temperature],
PRD(11)-a1108 [correction to the proximity-force approximation].
@ Other geometry:
Brevik & Lygren AP(96) [conducting wedge];
Emig et al PRL(01) [shape dependence];
Boyer AJP(03)oct-qp/02 [1D model];
Büscher & Emig PRA(04) [periodic];
Hoodbhoy JPA(05)qp/04 [single plate in external V];
Ahmedov & Duru JMP(05) [conical];
Kenneth & Klich PRL(06)qp [reflection];
Ahmadi & Nouri-Zonoz NPB(06) [flat spaces of non-trivial topology];
Schaden ht/06 [shape dependence, semiclassical];
Pirozhenko & Lambrecht PRA(08)-a0801 [finite-thickness slabs].
@ Arbitrary geometry:
Balian & Duplantier qp/04-proc;
Emig et al PRL(07) [compact objects];
Rodríguez et al PRA(07)-a0705 [numerical, arbitrary materials];
Reid et al PRL(09)-a0904;
Teo IJMPA(12)-a1205 [mode-summation approach];
Rodríguez-López et al IJMPcs(12)-a1207 [based on stochastic quantization];
Straley & Kolomeisky PRA(14)-a1403 [examples];
Bennett PRA(14)-a1404 [canonical treatment].
For Different Materials and Fields
> s.a. neutrinos; Unparticles.
@ Dielectrics: Molina-París & Visser PRD(97)ht;
Ford PRA(98)qp [sphere and wall];
Helfer & Lang JPA(99)ht/98 [half space];
Brevik & Pettersen AP(01)qp [wedge];
Sopova & Ford PRD(05)qp [between half-spaces, finite reflectivity];
Babington a0911-proc [between spheres];
Mostepanenko a2104 [Lifshitz theory].
@ Other materials:
Scandurra ht/03 [non-ideal conductor];
Noguez & Román-Velázquez PRB(04)qp/03 [different materials, and geometry];
Bimonte et al PRL(05) [superconducting film and measurement of variation];
Benassi & Calandra JPA(07)-a0808,
JPA(08)-a0808,
EPL(08)-a0808 [thin metal films];
Gambassi JPCS(09)-a0812 [critical Casimir force in thin films];
Ravndal a0903 [continuous medium];
Klimchitskaya et al RMP(09) [real materials].
@ For fermion fields: Santos & Tort qp/02;
Queiroz et al AP(05)ht/04 [with thermofield dynamics];
Kolomeisky et al PRA(08)-a0706 [1D free fermion gas].
@ Other fields: Ostrowski FPL(05) [tachyons];
Mobassem a1403 [massive scalar field];
Stokes & Bennett AP(15)-a1411 [fields with arbitrary spin];
Costantino & Fichet JHEP(20)-a2003 [neutrinos];
> s.a. klein-gordon fields [fractional].
@ Related topics: Ostrowski APPB(06)ht/05 [with an external magnetic field];
Solomon a1209
[effect of point-splitting regularization];
Fosco et al a1609 [isolated vs grounded conductors].
In Curved Spacetime, Gravitation and Cosmology
> s.a. equivalence principle; kaluza-klein phenomenology.
* Idea: It has been invoked as a
stabilization mechanism for the internal Kaluza-Klein dimensions, and used as a force
between defects and branes; It may occur in cosmology if the cosmological constant
originates from zero-point energy; It has been shown to obey the equivalence principle.
* In a quantum spacetime: Using
loop quantum gravity results, all calculations are finite and one recovers the usual
results without the need of regularization or renormalization.
@ General references:
Borman & Antonsen ht/96-proc;
Scardicchio PRD(05)ht [codimension > 1];
Sorge CQG(05) [gravitational correction],
CQG(09) [(no) gravitomagnetic first-order correction];
Bezerra et al PRD(11)-a1110 [thermal Casimir effect for neutrino and electromagnetic fields in FLRW spacetimes];
Nazari EPJC(15)-a1510 [in a general weak gravitational field].
@ With cosmological constant:
Elizalde ht/03-conf;
Gazzola et al AP(09) [massive scalar];
Kotanjyan et al PS(15)-a1505;
> s.a. cosmological acceleration.
@ In R × S3:
Brevik et al AP(02)ht;
Elizalde & Tort MPLA(04)ht/03 [massive scalar].
@ In theories with a minimal length:
Harbach & Hossenfelder PLB(06)ht/05,
ht/05-proc;
Nouicer JPA(05)ht;
Frassino & Panella PRD(12)-a1112,
Blasone et al IJMPD-a1912 [based on a GUP].
@ Other quantum-gravity-motivated: Casadio et al PRD(07)-a0704 [non-commutative spacetime];
Gambini et al CQG(15)-a1410 [in a quantum spacetime];
> s.a. non-commutative physics.
@ Related topics: Kong & Ravndal qp/97,
PRL(97)qp [with boundary, regularized];
Alnes et al PRD(06)qp [with extra dimensions];
Khabibullin et al CQG(06) [wormhole];
Nouri-Zonoz PRD(10)-a0904 [in weak-field Kerr spacetime, threading formulation];
Quach PRL(15)-a1502 [in superconductors];
Buoninfante et al a1811 [quadratic theories of gravity];
Bimonte a1902 [between superconductors];
> s.a. dynamical casimir effect; cosmological constant.
Other Situations > s.a. quantum
systems [H atom between plates]; sonoluminescence.
@ Acoustic / thermal analog:
Larraza & Denardo PLA(98);
Larraza AJP(99)nov;
Ford & Svaiter JPCS(09)-a0811 [potentially observable aspects];
Sushkov et al nPhys(11)
+ news pw(11)feb [thermal, observation];
Jaskula et al PRL(12)
+ Steinhauer Phy(12)
+ news pw(12)dec [dynamical Casimir effect in a Bose-Einstein condensate].
@ Other classical analogs: Boersma AJP(96)may [ships at sea];
news pw(08)jan [critical Casimir effect].
@ Related topics: Svetovoy & Lokhanin MPLA(00)qp [in Au, detailed];
Philbin et al AP(10)-a0909 [Casimir stress in an inhomogeneous medium];
Karabali a1111-proc
[contribution due to diffraction from edges and holes];
Sitenko MPLA-a1506 [with quantized massive matter fields];
news pw(18)dec [Casimir torque].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 5 apr 2021