Kaluza-Klein Phenomenology |
In General
> s.a. causality violations; geodesics;
spacetime [measurement]; kaluza-klein theory;
variation of constants.
* Effective 4D forces: In the 5D
theory, if the extra dimension has a Killing vector with constant norm (scalar
field), 5D timelike geodesics project to solutions of the Lorentz force equation
on spacetime.
* Possibilities: Particle spectra,
or effects on microscopic spacetime quantum geometry, which in turn affect
particle propagation (> see quantum-gravity
phenomenology); Space and time variation of the effective G
(> see gravitational constant).
@ 4D dynamics: Minguzzi IJGMP(15)-a1502 [non-constant internal dimensions and couplings].
@ Collider phenomenology: Hewett PRL(99);
Mathews et al JHEP(00) [at the Tevatron];
Bhattacharyya et al PLB(05) [Kaluza-Klein particles at colliders].
@ Standard model: Gillan ht/01 [6D];
Cianfrani & Montani IJMPD(08)gq/06 [from 8D, and neutrino mass];
Barnaföldi et al a1509 [strong interactions].
@ Other particles: Ichinose PRD(02)ht [fermions];
Belayev gq/03-conf [extra forces];
Kahil JMP(06) [particle motion];
Grard & Nuyts PRD(06)ht,
comment Maziashvili a0706 [towers of fields];
Lacquaniti et al GRG(11)-a0912-conf [geodesic particle motion, effective 4D motion];
Erdem MPLA(10) [fermions];
Overduin et al GRG(13)-a1305 [geodetic precession and Gravity Probe B];
Chopovsky et al PLB(14)-a1402 [questioning the existence of Kaluza-Klein modes];
Lü et al a1909 [4D Einstein-Maxwell-dilaton theory].
@ Other phenomenology:
Dzhunushaliev & Singleton GRG(00);
Horowitz & Maeda CQG(02)ht [bubble collision];
Kokarev G&C(98)gq/02 [generating solutions];
Ganguly & Parthasarathy PRD(03) [optical activity];
Yang et al PRD(03)gq [5D to 4D];
Ivanov & Prodanov PLB(05) [modifications to electromagnetism];
Dzhunushaliev & Myrzakulov IJMPD(07)gq/05 [singularities];
da Costa gq/06 [charge quantization];
Salvio PhD(06)ht/07 [6D theory and low-energy physics];
Ponce de León in(10)-a1003 [star exteriors];
Pugliese & Montani MPLA(13)-a1305 [astrophysical, stellar models];
> s.a. spinning particles.
@ Dark matter:
Servant & Tait NPB(03)hp/02,
NJP(02)hp;
Cheng et al PRL(02)hp;
Hooper hp/04-proc [indirect searches].
@ Related topics: Casas et al PLB(87) [5D, classical tests of general relativity];
Friedman & Higuchi NPB(90);
Wesson et al IJMPD(93);
Yu & Ford PLB(00)gq/99 [lightcone fluctuations in quantum gravity];
Montani IJTP(05)gq/04 [4D gauge connections];
Liko PLB(05)ht [non-compact, electric and magnetic fields];
Ponce de León IJMPD(09)gq/07 [exterior solutions and equivalence principle].
> Related topics: see formulations
of electromagnetic theory; modified newtonian gravity [PPN formalism];
tests of general relativity.
Cosmology > s.a. chaos in the metric and
bianchi models; cosmological constant;
inflation.
* Idea: Higher-dimensional cosmology;
most models are anisotropic and generalize the Kasner and the Mixmaster universes.
* Features: Casimir effects lead to
spontaneous compactification.
@ General references: Freund NPB(82);
Abbott et al PRD(85) [and inflation, numerical];
Díaz et al JMP(88) [solitonic solutions];
Faraoni et al IJMPD(95) [COBE constraints];
Lykken & Randall JHEP(00)ht/99;
Mohammedi PRD(02)ht [and acceleration];
Buettner et al IJMPA(04)ap/00 [early universe];
Mongan GRG(01)gq;
Liko et al SSR(04)gq/03;
Wesson 06;
Jamil a0810-MG12 [and dark energy];
Wanas et al ChPB(12)-a1111.
@ Variations: Darabi et al PLB(05) [non-commutative minisuperspace];
Vakili et al AP(06) [with spinor and cosmological constant];
Darabi a1101-ch
[non-compact internal manifold, and acceleration];
Sharif & Khanum ASS(11)-a1104 [FLRW-type, with varying G and Λ].
Compactification
> s.a. Pyrgon; Radion Field;
spacetime models [dimensional reduction].
* Idea: In traditional
Kaluza-Klein models, one usually wants a compact internal manifold (usually
a coset space), of size of the order of Planck length; This usually involves
matter fields, and the gravitational Casimir effect to fix an equilibrium
internal size; More recent proposals have used either non-compact, or compact
but large internal dimensions (> see branes).
* Spontaneous compactification:
One introduces a potential Aabc
which contributes −(1/48) Fabcd
Fabcd to the Lagrangian, where
F:= dA; The vacuum expectation value of F drives the
spontaneous compactification.
* Remark: One wants a particular
kind of energy-momentum density matter condensate in the quantized ground state, or
of spin-density matter condensate (only for parallelizable fibers).
@ General references: Hinterbichler et al PRD(14)-a1310 [general manifolds, Kaluza-Klein tower of fields].
@ Non-Abelian, SO(3):
Cremmer & Scherk NPB(76),
NPB(77);
Horváth et al NPB(77);
Chodos & Detweiler PRD(80);
Freund NPB(82);
Dereli & Tucker PLB(83);
Appelquist et al PLB(83).
@ Abelian: Muzinich JMP(86);
Cho & Pac MPLA(88);
Szydłowski PLB(88);
Sokołowski CQG(89).
@ And supergravity: Cremmer et al PLB(78);
Freund & Rubin PLB(80).
@ Stabilization of extra dimensions: Bronnikov & Rubin PRD(06)gq/05;
Chakraborty & SenGupta EPJC(17)-a1701 [classical, in higher-curvature gravity].
@ Related topics: Chodos & Myers AP(84),
PRD(85) [Casimir energy, effective potential];
Teo PLB(09)-a0812,
NPB(09) [finite-temperature Casimir effect];
Lacquaniti & Montani a0906-proc [new approach to matter dynamics];
Eingorn & Zhuk PLB(12)-a1201 [gravitational interaction];
Cunha & Maia a1310 [non-compact internal manifold, and massive gravity].
Other Aspects > see BEC [analog]; branes; carbon [and defects in graphene]; fifth force; higher-dimensional gravity [waves]; Raychaudhuri Equation.
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 11 jan 2020