Kaluza-Klein Phenomenology  

In General > s.a. causality violations; geodesics; spacetime [measurement]; kaluza-klein theory; variation of constants.
* Effective 4D forces: In the 5D theory, if the extra dimension has a Killing vector with constant norm (scalar field), 5D timelike geodesics project to solutions of the Lorentz force equation on spacetime.
* Possibilities: Particle spectra, or effects on microscopic spacetime quantum geometry, which in turn affect particle propagation (> see quantum-gravity phenomenology); Space and time variation of the effective G (> see gravitational constant).
@ 4D dynamics: Minguzzi IJGMP(15)-a1502 [non-constant internal dimensions and couplings].
@ Collider phenomenology: Hewett PRL(99); Mathews et al JHEP(00) [at the Tevatron]; Bhattacharyya et al PLB(05) [Kaluza-Klein particles at colliders].
@ Standard model: Gillan ht/01 [6D]; Cianfrani & Montani IJMPD(08)gq/06 [from 8D, and neutrino mass]; Barnaföldi et al a1509 [strong interactions].
@ Other particles: Ichinose PRD(02)ht [fermions]; Belayev gq/03-conf [extra forces]; Kahil JMP(06) [particle motion]; Grard & Nuyts PRD(06)ht, comment Maziashvili a0706 [towers of fields]; Lacquaniti et al GRG(11)-a0912-conf [geodesic particle motion, effective 4D motion]; Erdem MPLA(10) [fermions]; Overduin et al GRG(13)-a1305 [geodetic precession and Gravity Probe B]; Chopovsky et al PLB(14)-a1402 [questioning the existence of Kaluza-Klein modes]; Lü et al a1909 [4D Einstein-Maxwell-dilaton theory].
@ Other phenomenology: Dzhunushaliev & Singleton GRG(00); Horowitz & Maeda CQG(02)ht [bubble collision]; Kokarev G&C(98)gq/02 [generating solutions]; Ganguly & Parthasarathy PRD(03) [optical activity]; Yang et al PRD(03)gq [5D to 4D]; Ivanov & Prodanov PLB(05) [modifications to electromagnetism]; Dzhunushaliev & Myrzakulov IJMPD(07)gq/05 [singularities]; da Costa gq/06 [charge quantization]; Salvio PhD(06)ht/07 [6D theory and low-energy physics]; Ponce de León in(10)-a1003 [star exteriors]; Pugliese & Montani MPLA(13)-a1305 [astrophysical, stellar models]; > s.a. spinning particles.
@ Dark matter: Servant & Tait NPB(03)hp/02, NJP(02)hp; Cheng et al PRL(02)hp; Hooper hp/04-proc [indirect searches].
@ Related topics: Casas et al PLB(87) [5D, classical tests of general relativity]; Friedman & Higuchi NPB(90); Wesson et al IJMPD(93); Yu & Ford PLB(00)gq/99 [lightcone fluctuations in quantum gravity]; Montani IJTP(05)gq/04 [4D gauge connections]; Liko PLB(05)ht [non-compact, electric and magnetic fields]; Ponce de León IJMPD(09)gq/07 [exterior solutions and equivalence principle].
> Related topics: see formulations of electromagnetic theory; modified newtonian gravity [PPN formalism]; tests of general relativity.

Cosmology > s.a. chaos in the metric and bianchi models; cosmological constant; inflation.
* Idea: Higher-dimensional cosmology; most models are anisotropic and generalize the Kasner and the Mixmaster universes.
* Features: Casimir effects lead to spontaneous compactification.
@ General references: Freund NPB(82); Abbott et al PRD(85) [and inflation, numerical]; Díaz et al JMP(88) [solitonic solutions]; Faraoni et al IJMPD(95) [COBE constraints]; Lykken & Randall JHEP(00)ht/99; Mohammedi PRD(02)ht [and acceleration]; Buettner et al IJMPA(04)ap/00 [early universe]; Mongan GRG(01)gq; Liko et al SSR(04)gq/03; Wesson 06; Jamil a0810-MG12 [and dark energy]; Wanas et al ChPB(12)-a1111.
@ Variations: Darabi et al PLB(05) [non-commutative minisuperspace]; Vakili et al AP(06) [with spinor and cosmological constant]; Darabi a1101-ch [non-compact internal manifold, and acceleration]; Sharif & Khanum ASS(11)-a1104 [FLRW-type, with varying G and Λ].

Compactification > s.a. Pyrgon; Radion Field; spacetime models [dimensional reduction].
* Idea: In traditional Kaluza-Klein models, one usually wants a compact internal manifold (usually a coset space), of size of the order of Planck length; This usually involves matter fields, and the gravitational Casimir effect to fix an equilibrium internal size; More recent proposals have used either non-compact, or compact but large internal dimensions (> see branes).
* Spontaneous compactification: One introduces a potential Aabc which contributes −(1/48) Fabcd Fabcd to the Lagrangian, where F:= dA; The vacuum expectation value of F drives the spontaneous compactification.
* Remark: One wants a particular kind of energy-momentum density matter condensate in the quantized ground state, or of spin-density matter condensate (only for parallelizable fibers).
@ General references: Hinterbichler et al PRD(14)-a1310 [general manifolds, Kaluza-Klein tower of fields].
@ Non-Abelian, SO(3): Cremmer & Scherk NPB(76), NPB(77); Horváth et al NPB(77); Chodos & Detweiler PRD(80); Freund NPB(82); Dereli & Tucker PLB(83); Appelquist et al PLB(83).
@ Abelian: Muzinich JMP(86); Cho & Pac MPLA(88); Szydłowski PLB(88); Sokołowski CQG(89).
@ And supergravity: Cremmer et al PLB(78); Freund & Rubin PLB(80).
@ Stabilization of extra dimensions: Bronnikov & Rubin PRD(06)gq/05; Chakraborty & SenGupta EPJC(17)-a1701 [classical, in higher-curvature gravity].
@ Related topics: Chodos & Myers AP(84), PRD(85) [Casimir energy, effective potential]; Teo PLB(09)-a0812, NPB(09) [finite-temperature Casimir effect]; Lacquaniti & Montani a0906-proc [new approach to matter dynamics]; Eingorn & Zhuk PLB(12)-a1201 [gravitational interaction]; Cunha & Maia a1310 [non-compact internal manifold, and massive gravity].

Other Aspects > see BEC [analog]; branes; carbon [and defects in graphene]; fifth force; higher-dimensional gravity [waves]; Raychaudhuri Equation.

main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 11 jan 2020