Neutrinos |
In General
> s.a. particle physics and types
of particles / neutrino detectors and applications.
* History: 1930, Existence predicted
by Pauli, who called it "neutron"; 1933 (after Chadwick's discovery of
the n), it became Fermi's "neutrino"; 1938, H Bethe, nuclear
reaction in the Sun; 1953, νe
discovered by Reines & Cowan; 1962, First neutrino beam at BNL and
νμ discovered; 1969, Gribov
and Pontecorvo's solution of solar neutrino puzzle, elaborated on later by Wolfenstein
and Mikheyev & Smirnov; 1975, ντ
discovered by Perl; 1989, There are only 3 light neutrinos (m <
mZ/2), from the Z line shape;
1998, Evidence for oscillations from Super-Kamiokande; 2002, Evidence reported for
neutrinoless double-β decay 2n → 2p + 2e
(implies lepton number violation, mν
value); 2003, They are candidates for hot dark matter but cannot account for most of
the dark matter even if massive, because of constraints from large-scale structure;
2016, Neutrino research a growing field, with expectation that neutrinos hold the key to
expanding the standard model; 2018, MiniBooNE data are incompatible with oscillations
involving just the three known neutrino flavors.
* Interactions: With a q,
it can exchange a W (charged current, ν turns into an e
or μ, as in νe
+ d → p + n + e), or a Z (neutral
current, ν remains, as in ν + d → p
+ n + ν ); can be used to measure the weak mixing angle.
* Open issues: Do νs and
ν-bars have the same masses? If not, this could signal CPT violation;
Are neutrinos Dirac or Majorana spinors? Confirmation of neutrinoless double-beta decay
would imply that they are their own antiparticles, and therefore Majorana particles;
> s.a. neutron.
@ History: Franklin PT(00)feb;
Bilenky phy/01,
MPLA(04) [and status];
Pietschmann phy/06-ln;
# B Pontecorvo;
focus Phy(07)
[1953 νe discovery];
Zralek APPB(10)-a1012-ln;
Steinberger AP(12);
focus Phy(15)
[1962 νμ discovery];
Rajasekaran a1606;
Recami HJ-a1712 [Majorana];
Blondel a1812-conf
[ντ];
Goodman a1901-proc ["mistakes"];
Ramond a1902-conf;
Rodriguez a1907-conf.
@ Books: Sutton 92;
Winter 00;
Giunti & Kim 07;
Zuber 11 [r CP(12)#1,
e1 PT(05)apr].
@ General references, reviews: Witten TPT(83)feb [masses, detection];
Sarma IJMPA(95);
Reines RMP(96);
Haxton & Holstein AJP(00)jan,
AJP(04)jan;
Akhmedov NPPS(01);
González-García & Nir RMP(03)hp/02;
Roulet ap/04-ln [phenomenology];
Aničin phy/05-in;
Maricic & Learned CP(05) [specially oscillations];
Wark pw(05)jun;
Strumia & Vissani hp/06;
Xing IJMPA(08);
Winter NPPS(10);
Brugnera IJMPA(11);
Barger et al 12;
Zukanovich Funchal et al a1308-ln;
Lincoln & Miceli TPT(15);
Aguilar-Arevalo & Bietenholz RCF-a1601;
news pt(16)aug [excitement about neutrino physics];
Spurio GdF-a1609;
Goodman AJP(16)dec [RL];
Kopp Phy(18)
[viewpoint on 4th neutrino status];
news APS(19)may [status].
Masses > s.a. mixing and oscillations;
types of neutrinos [including Dirac vs Majorana, and superluminal].
* Theory: Theoretical values are
largely unknown; In the standard model, all neutrinos are massless, but we know from
oscillations that (at least two) have non-zero masses; GUTs require non-zero masses, but
they don't predict their values; However, oscillation experiments only probe differences
between squared masses, and do not give values for individual masses; The "neutrino mass
hierarchy problem" is the question whether m2
is lighter than m3 (normal hierarchy) or heavier
(inverted hierarchy).
* Bounds on masses: 1998, The neutrino is not
massless, based on evidence for neutrino oscillations; 2010, Galaxy survey gives that the
sum of all neutrino masses < 0.28 eV (95% CL) in flat ΛCDM cosmology; 2019, KATRIN
(Karlsruhe Tritium Neutrino) experiment gives 1.1 eV as upper bound on the neutrino mass
[cosmos(19)sep;
Brugnera Phys(19)]; 2021, new KATRIN bound is 0.8 eV
[sn(21)apr].
@ General references:
Wolfenstein CP(96);
Zuber PRP(98),
Valle hp/98-proc [rev];
Divakaran & Rajasekaran MPLA(99) [proposal];
Akhmedov NPPS(00)hp [seesaw];
Bilenky et al PRP(03);
McKeown & Vogel PRP(04) [and oscillations];
Giedt et al PRD(05)ht [string theory];
King CP(07) [rev];
news pw(10)jun
[evidence for different neutrino and antineutrino masses];
Simpson et al JCAP(17)-a1703 [strong evidence for the normal hierarchy].
@ And cosmology:
Elgarøy et al PRL(02) [2dF];
Kainulainen & Olive ap/02;
Abazajian & Dodelson PRL(03) [weak lensing];
Elgarøy & Lahav JCAP(03) [2dF and WMAP];
Hannestad PRD(02),
JCAP(03) [WMAP & 2dF],
& Raffelt JCAP(04);
Kaplinghat et al PRL(03) [cmb];
Tegmark et al PRD(05)ap/03 [anthropic];
Brandenberger et al PRD(04) [robustness];
Crotty et al PRD(04);
Lesgourgues et al PRD(04) [redshift surveys];
Ichikawa et al PRD(05) [cmb only];
Melchiorri et al NPPS(05)ap;
Kahniashvili et al PRD(05)ap,
Wang et al PRL(05)ap [galaxy cluster surveys];
Hannestad PRL(05)ap [and dark energy equation of state],
& Raffelt JCAP(06)ap-in;
Slosar PRD(06)ap;
Goobar et al JCAP(06);
Lesgourgues & Pastor PRP(06);
Elgarøy NPPS(07)hp/06;
Zunckel & Ferreira JCAP(07);
De Bernardis et al PRD(08)-a0809,
PRD(09)-a0907;
Banhatti a0901 [bounds, and equivalence principle];
Kawasaki & Sato PTP(09)-a0907;
Sekiguchi et al JCAP(10)
[and high-accuracy measurement of the Hubble constant];
Thomas et al PRL(10)
+ Lesgourgues Phy(10) [galaxy surveys];
Hannestad PPNP(10)-a1007 [rev];
Jose et al PRD(11) [from high-redshift galaxy luminosity functions];
Shimon et al MNRAS(12)-a1201 [SZ surveys];
Hamann et al JCAP(12)-a1209 [galaxy surveys];
Lesgourgues & Pastor AHEP(12)-a1212;
Burenin AL(13)-a1301;
Battye & Moss PRL(14) [cmb and lensing];
Wolk a1503,
Gerbino et al PRD(16)-a1507,
Huang et al EPJC(16)-a1512 [improving constraints];
Vagnozzi et al PRD(17)-a1701;
Couchot et al A&A(17)-a1703;
Wang et al ChPC(18)-a1707.
@ And supernovae:
Lunardini & Smirnov JCAP(03);
Dighe et al JCAP(03) [IceCube].
@ Theory: Arkani-Hamed et al PRD(02)
[higher-dimensional, 10−1–10−4 eV];
Mohapatra NJP(04) [rev];
Berezinsky et al JHEP(05) [and low-scale gravity];
Lambiase et al CQG(06)gq/05 [lower bound, geometric quantum mechanics and SN1987A];
Sharatchandra a0710 [from quantum gravity attractions];
Mavromatos a1506-conf
[unconventional scenarios, Lorentz-symmnetry violation and torsion];
Dvali & Funcke PRD(16)-a1607 [from a gravitational θ term];
Asselmeyer-Maluga & Król MPLA(19)-a1801 [and exotic smoothness];
Carneiro a1811 [from minimal length];
> s.a. standard model; non-commutative gauge theories.
Other Properties and Processes
> s.a. Fluorine.
@ Magnetic dipole moment:
Vysotsky MPLA(03) [theory];
MUNU Collaboration PLB(03) [exp];
Bell IJMPA(07),
Novello & Bittencourt IJMPA(14)-a1111 [theory];
Viaux et al A&A(13)-a1308 [and the globular cluster M5].
@ Neutrinoless double-beta decay: Feder PT(10)jan;
Bilenky & Giunti MPLA(12) [rev];
news sn(18)feb [experiments];
Engel & Vogel Phy(18).
Theoretical Issues and Other Topics > s.a. composite models;
matter; neutrinos in astrophysics;
spin-statistics; Superfluids.
@ Propagation: Elizalde et al PRD(04)hp [strongly magnetized media];
Kuznetsov et al PRD(06) [dispersion in external magnetic field];
Bravo & Sahu MPLA(07) [in media, self-energy corrections];
Millhouse & Latimer AJP(13)sep [through matter];
Vlasenko et al PRD(14)-a1309,
Cirigliano et al PLB(15)-a1406 [in hot, dense media];
Volpe IJMPE(15)-a1506
[in media, evolution equations based on the mean-field, extended mean-field and Boltzmann equations];
Zhang EPJP(17)-a1803 [in curved spacetime].
@ CPT violation:
Barenboim et al PLB(02),
PLB(02);
Bahcall et al PLB(02)hp;
news sn(10)jun [possible antineutrino-neutrino asymmetry].
@ New physics: Hirsch et al SA(13)apr;
Archidiacono & Hannestad JCAP(14)-a1311 [constraints on non-standard interactions].
@ In gravitational fields:
Nieves & Pal MPLA(99)gq [general relativity coupling];
Lambiase et al PRD(05)gq;
Mukhopadhyay MPLA(05)ap [asymmetry around black holes];
> s.a. quantum-gravity phenomenology.
@ Related topics: Sciama ASS(01)ap/97 [decaying neutrino and ISM ionization];
Casini et al PRD(99) [and gravity];
Kaplan et al PRL(04) [varying masses and dark energy];
Giunti & Studenikin PAN(09)-a0812 [electromagnetic properties];
Goldhaber & Goldhaber PT(11)may [elusive helicity reversal];
Fujikawa & Tureanu MPLA(15)-a1507 [neutrino-antineutrino mass splitting];
Costantino & Fichet JHEP(20)-a2003 [neutrino Casimir force];
> s.a. Double-Beta Decay.
"The earth is just a silly ball / To them, through which they simply pass." – John Updike.
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 22 apr 2021