Dark Matter Distribution on Solar and Galactic Scales  

In the Solar System > s.a. dark-matter detection; neutrons.
@ General references: Khriplovich & Pitjeva IJMPD(06)ap, Khriplovich IJMPD(07)ap [bounds]; Khriplovich & Shepelyansky IJMPD(09)-a0906, Khriplovich IJMPD(11)-a1004 [captured by the Solar System]; Iorio JCAP(10)-a1001 [Sun- and planet-bound, effects]; Frandsen & Sarkar PRL(10) + news wired(10)jul [asymmetric dark matter]; Edsjö & Peter a1004 [capture and ejection]; Khriplovich a1005; news pw(10)sep; De Risi et al JCAP(12)-a1206 [and classical tests of general relativity]; Lages & Shepelyansky MNRAS(13)-a1211 [capture and chaotic dynamics]; Beck & Colafrancesco a1612.
@ In the Sun: Lopes et al MNRAS(02)ap/01 [helioseismology, supersymmetric dark matter]; Peter PRD(09), PRD(09) [WIMPS and the Sun]; Bozorgnia & Schwetz JCAP(14)-a1405 [effect of the Sun's gravitational potential]; Vincent et al PRL(15)-a1411 + news pw(15)feb [asymmetric, and heat transport]; Casanellas & Lopes MPLA(14)-a1411 [as tests of new physics].
@ Earth-bound: Adler PRD(09)-a0805 [and flyby anomaly],
JPA(08); Portilho BJP(09)-a0809 [and Chandler wobble]; Peter PRD(09); news space(10)feb; Catena & Kouvaris a1608.
@ Other planets: Frère et al PRD(08) [planetary motions]; Adler PLB(09)-a0808 [planet-bound]; Saadat et al IJTP(10) [planet orbits].

In the Milky Way Galaxy > s.a. milky way galaxy; types of dark matter [MACHOS].
* 2014: CoGeNT data confirm the annual modulation of events seen by DAMA; (In the northern summer, the tangential velocity of the Earth as it orbits the Sun is in the same direction as the motion of the solar system, so the number of detected collisions is expected to peak in summer and drop in the winter).
@ Reviews: Blitz SA(11)oct; Famaey a1501-conf; Pato & Iocco a1511-proc; news Phys(19)may.
@ General references: Natarajan & Sikivie PRD(07)-a0705 [second caustic ring]; Bruch et al ApJ(09)-a0804 [dark disk]; Siegal-Gaskins JCAP(08) [from gamma-ray background]; Casanellas & Lopes MNRAS(10)-a1008 [effect on stellar interior and asteroseismology]; Pestaña & Eckhardt ApJL(10)-a1009 [difficulties]; Conroy et al ApJ(11)-a1010 [globular clusters, against]; Moni Bidin et al ApJL(10)-a1011 [no-evidence result]; news msnbc(12)aug [evidence of WIMP annihilation from gamma rays]; Burch & Cowsik ApJ(13)-a1306; Strigari PRP(13) [searches]; Iocco et al nPhys(15)-a1502, comment Durazo et al a1503, McGaugh et al a1503, response Iocco et al a1503 [in the inner Milky Way]; Pato & Iocco ApJ(15)-a1504 [non-parametric reconstruction from observations]; Pato et al JCAP(15)-a1504 [dynamical constraints]; Hessman A&A(15)-a1506; Green JPG(17)-a1703 [and direct detection]; news Phy(19)may [and stellar streams].
@ In the halo: Nesti & Salucci JCAP(13)-a1304; Wang et al MNRAS(15)-a1502 [dynamical tracers]; news pw(16)mar [interaction with rivers of stars].
@ Galactic center / bulge: Gondolo & Silk PRL(99) + pn(99)sep [near Milky Way core]; Boehm et al PRL(04) [signal in 511 keV photons]; news pw(10)oct [galactic center]; Linden et al ApJ-a1106 + news bbc(11)jun [galactic-center radio filaments]; Leane & Slatyer PRL(19) [gamma-ray excess evidence].
@ In the solar neighborhood: Bahcall ApJ(84), PTRS(86); Garbari et al AIP(10)-a1001, MNRAS(11)-a1105; Pato et al PRD(10)-a1006; Iocco et al JCAP(11)-a1107; Moni Bidin et al a1204-proc, ApJ(12)-a1204 + news ESO(12)apr [no evidence from motion of 400 stars]; Bovy & Tremaine ApJ(12)-a1205 [evidence consistent]; Garbari et al MNRAS(12)-a1206; Nesti & Salucci a1212-conf; news pw(14)jan [CoGeNT confirmation of anual variation]; Read JPG(14)-a1404; Silverwood et al MNRAS(16)-a1507 [non-parametric method]; O'Hare et al PRD(18) [moving at high speed, like a hurricane]; Iorio a1907 [planetary orbital effects are not detectable]; news Phys(21)feb [using binary pulsars as accelerometers]; > s.a. comets.

Other Astrophysical Aspects > s.a. cosmological tests of gravity; matter in the universe [electrons]; tests of the equivalence principle.
* Dark stars: Originally researcher Paolo Gondolo wanted to dub these new, theoretical kinds of invisible stars "brown giants," but his collaborators insisted on calling them "dark stars," after the song "Dark Star" first played in 1967 by The Grateful Dead and a dark star song by Crosby, Stills, Nash and Young [@ news msnbc(09)dec21].
@ General references: Bramante PRL(15) + news ns(15) oct [dark matter and type Ia supernovae]; Deliyergiyev et al PRD-a1903 [dark compact objects, rev].
@ Dark stars: Moskalenko & Wai ap/06 [WIMP-burning stars]; news pw(07)dec; Scott et al MNRAS(09)-a0809 [dark stars at galactic center]; Spolyar et al PoS-a0901 [as precursors to supermassive black holes]; Gondolo et al PoS-a0901 [formation]; Spolyar et al ApJ(09)-a0903; news msnbc(09)dec; Dai & Stojković JHEP(09)-a1001 [no stable neutralino stars]; Freese et al ApJ(10)-a1002; Gondolo et al JCAP(10); Zackrisson et al MNRAS(10)-a1006 [observational constraints]; Freese et al AIP(10)-a1006 [supermassive]; Sandick et al a1012-proc [signatures in the galactic halo]; Macedo et al ApJ(13)-a1302 [compact stellar-size object inspiral and gravitational-wave emission]; Rindler-Daller et al ApJ(15)-a1408 [improved models]; Freese et al RPP(16)-a1501 [rev]; Kouvaris & Nielsen PRD(15)-a1507 [asymmetric dark matter].
@ MOND-like effects: Bruneton et al JCAP(09)-a0811; Famaey & Bruneton a0906-proc [from interactions]; Ho et al GRG(11)-a1105-GRF; Ng a1212-MG13.
@ Related topics: Afshordi PRD(07), McDonald PRD(07) [clustering]; Salati IJMPcs(14)-a1403 [effects of dark matter annihilation]; Berezinsky et al PU(14)-a1405 [small-scale clumps, rev]; Brito et al PRL(15)-a1508 [accretion by stars]; > s.a. supernovae.
@ And life / biological phenomena: Zioutas PLB(90); Collar PLB(96)ap/95 [extinctions]; Hooper & Steffen JCAP(12)-a1103 [and the habitability of planets]; Freese & Savage PLB(12)-a1204; Randall & Reece PRL(14) [periodic comet impacts]; Randall 15 [+ yf(15)nov].

Around the Milky Way Galaxy > s.a. dark matter on cosmological scales [including other galaxies].
* Idea: Proposed dark matter models often predict that colliding dark matter particles could annihilate each other, producing detectable photons at a range of wavelengths, including gamma rays, which could yield our first non-gravitational clues to the nature of dark matter.
@ References: Peter & Benson PRD(10)-a1009 [Milky-Way satellites]; Ackermann et al PRL(11), Geringer-Sameth & Koushiappas PRL(11) + news wired(11)nov [lower mass bound from annihilations]; news space(12)apr [dwarf galaxies]; Anderhalden et al JCAP(13)-a1212; Feldmann & Spolyar MNRAS(15)-a1310 [starless substructures]; Ackermann et Fermi-LAT PRD(14) [Milky-Way satellites]; Nichols et al MNRAS(14)-a1404 [the Smith Cloud and its survival of a galactic disk passage]; Geringer-Sameth et al PRL(15) + Slatyer Phy(15) [gamma rays from a satellite dwarf galaxy]; Bovy PRL(16) [detection using stellar streams].


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 8 feb 2021