![]() |
Qubits
> s.a. Rebits; decoherence.
* Idea: A qubit is a
2-state system, a quantum system with a 2D Hilbert space; The term was
coined by Benjamin Schumacher in 1992, and has become the conceptual
tool needed to make progress in quantum computing [@ history,
sn(17)jul].
* Properties:
Density matrices for 1 qubit are in 1-1 correspondence with points
of the 3D solid ball, the Bloch sphere.
* Example: A theoretical
example is the two-level atom, and in practice trapped
43Ca+ ions seem to work well (2014).
@ One qubit: Urbantke AJP(91)jun [phases and holonomy];
Slater qp/97 [statistical thermodynamics],
qp/00 [and information theory];
Ralph et al FP(98) [solution];
Sassaroli AJP(99)oct [neutrino oscillations];
Bagrov et al JPA(01)qp [V(t)];
Barata & Cortez PLA(02)qp [periodic driving];
An et al JOB(04)qp/05 [coupled to squeezed vacuum field];
Maioli & Sacchetti JSP(05) [+ stochastic perturbation];
Gemmer & Michel PhyE(05)qp [+ environment];
Kato et al qp/06-conf [Holevo capacity from Voronoi diagrams];
Calmet & Calmet PLA(12)-a1201 [in quantum field theory];
Kiktenko & Korotaev PS(13) [coupled to a mixed quantum field state];
Gómez et al a1604 [a qubit is more than a quantum coin];
Liss et al a1812 [topological order];
Amao & Castillo a2001 [geometric algebra approach];
Brandenburger et al a2010 [entropic uncertainty principle];
> s.a. particles; relativistic quantum mechanics.
@ One qubit, in curved spacetime:
Palmer et al AP(12);
Viennot & Moro a1609 [adiabatic transport].
@ Two qubits: Kummer IJTP(01);
Abouraddy et al PRA(01) [decomposition and entanglement];
Avron et al JMP(07);
Güngördü et al PRA(12)-a1205 [dynamical invariants of two-level systems];
Santos & Semião PRA(14)-a1311 [+ environment, master equation];
> s.a. composite systems;
examples of entanglement.
@ N qubits: Wootters qp/03-conf [generalized Wigner function];
Rigetti et al QIP(04)qp/03 [and information];
Klimov et al JPA(12)-a1007 [phase space];
Coecke & Duncan NJP(11) [graphical calculus];
Giorgi et al PRL(11)-a1108 [three qubits, quantum and classical correlations];
Li et al PRA(14)-a1406 [classifying multi-qubit quantum states];
Rau a2103 [symmetries and geometries].
@ Realizations: Kim Phy(14);
> s.a. quantum computing.
Other Types and General Discrete Systems
> s.a. Clifford Operators; Discrete Models;
Ehrenfest Theorem; wigner functions.
* Qutrits: A qutrit
is a three-state quantum system; For example, a single photon passing
through a system of three slits, a "Young-type" qutrit.
* Qudits: A qudit is
a quantum system with d-dimensional Hilbert space.
* Spin-J system:
In the Majorana representation, a state of a spin-J system can
be seen as a set of 2J points on the Bloch sphere.
@ General references:
Gudder FP(06) [and finite group theory];
Hassan & Joag JPA(07) [combinatorial approach];
Lenz & Veselić MZ(09)-a0709 [discrete Hamiltonians].
@ Relationship with continuum ones:
Ruzzi & Galetti JPA(00);
Ruzzi JPA(02)qp/01,
& Galetti JPA(02);
Barker JPA(01),
JMP(01) [continuum limits];
Brukner et al PRA(03)qp/02;
Kornyak in(09)-a0906 [gauge invariance and continuum limit];
't Hooft FP(14).
@ Three-level: Sánchez JPA(94);
Slater JGP(01)qp/00 [Bures geometry];
Rau & Zhao PRA(05)qp [complete treatment];
Chruściński & Wudarski OSID(11)-a1105,
Chruściński & Sarbicki OSID(13)-a1108 [entanglement witnesses];
Jarvis JPA(14)-a1312 [mixed two-qutrit system].
@ One spin: Bruno PRL(12)-a1204
+ Niu Phy(12)jun
[spin-J system, Majorana's stellar representation];
> s.a. quantum spin models [more spins];
types of quantum states.
@ Other discrete systems: de la Torre & Goyeneche AJP(03)jan-qp/02;
Kornyak PPN(13)-a1208;
Planat IJGMP(11) [four and eight-level systems];
Domenech et al RPMP(11) [two-valued states over orthomodular lattices];
Vourdas JMP(12)
[partial order and T0 topology];
Hanson et al JPA(14) [finite-field frameworks];
van Wonderen & Suttorp a1808 [a thermal bath];
> s.a. cellular automaton; classical systems;
graph theory; modified quantum mechanics
[discrete underlying space].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 29 mar 2021