Decoherence: Specific Models and Systems  

In General > s.a. dissipation; Rotor; spin models.
@ General references: Meyer qp/98 [coarse + fine degrees of freedom, scale decoherence]; Riedel a1205 [detecting classically undetectable particles].
@ Chaotic environment: Blume-Kohout & Zurek PRA(03)qp/02; Hornberger & Sipe PRA(03) [massive Brownian particle]; Bandyopadhyay EPL(09)-a0806; Beer & Lutz a1004 [general non-equilibrium environment]; Lombardo & Villar PRD(13) [qubit in a noisy environment].
@ Classically chaotic: Hu & Shiokawa ht/95; Zurek PS(98)qp, APPB(98); Jalabert & Pastawski PRL(01)cm/00; Toscano et al PRA(05).
@ Coupled oscillators: de Ponte et al qp/03; Lombardo & Villar IJMPB(06)qp/05 [and chaotic degrees of freedom], PRA(05)qp [composite environment].
@ Spin environment: Gedik SSC(06)qp/05 [two spins in spin environment]; Cormick & Paz PRA(08)-a0709, a0709, PRA(08)-a0804; > s.a. spin models.
@ Oscillator + other system: Unruh & Zurek PRD(89) [+ 1D massless scalar]; Sinha PLA(97)qp/05 [at T = 0]; Maia & Dalvit PRA(00)qp [+ radiation]; Schlosshauer et al PRA(08)-a0712 [+ 2-level systems].
@ Quantum walk: Brun et al PRA(03); Prokof'ev & Stamp PRA(06) [on a hypercubic lattice]; Annabestani et al PRA(10)-a0910 [1D line]; Ampadu CTP-a1104 [2D].
@ Discrete models: Braun PRL(06)qp/05 [many 2-level atoms]; Pineda PhD(07)-a0711 [1, 2, and n qubits]; Castagnino & Fortin IJTP(11)-a1010 [decoherence prediction]; Fortin & Lombardi a1010 [spin-bath model]; Alberti et al NJP(14)-a1409 [discrete-time quantum walks]; Siudzińska & Chruściński JPA(15)-a1506 [1 qubit, as a diffusion on the Bloch sphere].
@ Other models: Meyer qp/98 [based on Dirac equation]; Lanz & Vacchini IJTP(98)qp/99 [isolated system]; Kleckner & Ron PRA(01) [gas reservoir]; Salgado & Sánchez-Gómez qp/02 [spectral and stochastic methods]; van Wezel et al PRL(05)cm/04, PRB(06)cm [spontaneous symmetry breaking]; Lombardo & Villar PLA(05) [Brownian motion, zero-point fluctuations]; Serafini et al JOB(05)qp [continuous variables]; Barenboim et al NPB(06) [neutrinos]; Bellomo et al JPA(07) [frictional]; Domínguez-Clarimon AP(07) [particle crossing a medium]; Adami & Erdős JSP(08)-a0802 [electron coupled to phonon bath]; Damski et al PRA(11)-a0911 [critical dynamics, in an environment undergoing a quantum phase transition]; De Lorenci & Ford a1205 [1D box with fluctuating boundaries]; Paladino et al RMP(14) [decoherence induced by 1/f noise]; Brun & Mlodinow PRA(16)-a1512 [by internal degrees of freedom].
@ Matter-wave interferometers: Hackermüller Nat(04)feb [C70 molecules, double slit, T > 1000 K]; Uys et al PRL(05), Burkov et al PRL(07); Villar & Lombardo IJMPB(07)-a0707, JPCS(07)-a0707.
> Other quantum mechanics systems: see open systems; quantum systems.

Gravity-Related > s.a. black-hole information and thermodynamics; quantum cosmology; quantum spacetime.
* Idea: Gravitational decoherence is the loss of coherence in low-energy quantum systems resulting from random metric fluctuations.
* Proposals: (Kay) Based on a unitary framework for quantum gravity, assumes that the operators tied to the gravitational degrees of freedom are unobservable and equates physical entropy with matter-gravity entanglement entropy; (Blencowe) Weak gravitational waves that fill the Universe are enough to disturb quantum superpositions and ensure that large objects behave according to classical physics.
@ Particle in curved background: Mensky & Novikov IJMPD(96) [with closed timelike curves]; Pikovski et al nPhys(15)-a1311, comment Bonder et al nPhys(16)-a1507, Pikovski et al a1508, comment Bonder et al PRD(15)-a1509, reply Pikovski et al a1509 [decoherence from gravitational time dilation].
@ Gravitational waves: Reynaud et al EPL(01)qp, IJMPA(02)gq/01 [and planets]; Reynaud et al in(07)-a0806, a0801-ln; Blencowe PRL(13)-a1211 [effective field theory approach].
@ Spacetime fluctuations: Power & Percival PRS(00); Wu et al NCB(00); Tamburini a0910 [with entangled photons]; Anastopoulos & Hu CQG(13)-a1305 [master equation]; Oniga et al a1612 [dynamics of bound states]; > s.a. dynamical models of wave-function collapse; matter in quantum gravity.
@ Gravity-induced decoherence: Kay & Abyaneh a0710 [Kay's proposal]; Anastopoulos & Hu CQG(08)-a0803; Pitovski et al nPhys(15)-a1311 [and gravitational time dilation]; Kafri et al NJP(14)-a1401, Bera et al FP-a1408 [models]; De Lorenci & Ford PRD(15)-a1412 [induced by long wavelength gravitons]; Pfister et al a1503 [test]; news ns(15)jun; Podolskiy & Lanza AdP(16)-a1508 [time and length scales]; Altamirano et al a1612 [gravity is not a pairwise local classical channel]; Samuel a1706 [from double-slit considerations]; Bassi et al CQG-a1706.
@ Gravitation, other: Kiefer PRD(92); Kay CQG(98)ht [Newtonian quantum gravity]; Kiefer LNP(00); Haba IJTP(01) [thermal gravitons]; Calucci CQG(04)qp/03 [graviton emission]; Terashima & Ueda JPA(05)qp/03 [and spacetime curvature]; Gambini et al GRG(07) [pedagogical]; Pfister et al a1503 [information-theoretic notion of decoherence, and test]; Adler & Bassi PLA(16)-a1506 [for mesoscopic systems].
@ Cosmology: Castagnino & Lombardo GRG(96); Campo & Parentani PRD(08)-a0805 [entropy of fluctuations]; Franco & Calzetta CQG(11)-a1103 [in the cosmic background radiation]; Liu et al JHEP(16)-a1608 [massive fields during inflation]; Hollowood & McDonald PRD(17)-a1701 [cosmological perturbations]; > s.a. decoherence [self-induced].

Other Field Theories > s.a. decoherence [particle physics, Lorentz invariance].
@ Scalar field: Lombardo & Mazzitelli PRD(96) [coarse-graining and decoherence of long-wavelength modes]; Giraud & Serreau PRL(10)-a0910 [self-interacting, and thermalization]; Koksma et al PRD(10)-a0910, PLB(12)-a1101.
@ Electrodynamics: Kiefer PRD(92); Anglin & Zurek PRD(96)qp/95; Haba JPA(00) [at finite temperature]; Levinson JPA(04)qp/03 [electron beams], Hsiang & Ford PRL(04) [electrons and electromagnetic field fluctuations]; Bellomo et al PRA(06) [free particle and electromagnetic field at finite temperature]; Kim a1203-conf [in polarization optics, and the Poincaré sphere]; > s.a. QED; quantum field theory effects in curved spacetime.


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 20 jun 2017